Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift

 

Molecular gas on multiple scales in the Spiderweb galaxy

The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy—a massive galaxy in a distant protocluster—is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

Dusty doughnut around massive black hole spied for first time

The dust continuum emission at 694 GHz mapped by ALMA in the CND of NGC1068. See García-Burillo et al. 2016 for further details.

The dust continuum emission at 694 GHz mapped by ALMA in the circumnuclear disk of NGC1068. See García-Burillo et al. 2016 for further details.

An international team of astronomers lead by the spanish astronomer Santiago García-Burillo (OAN, Madrid), and with the participation of CAB scientists (Almudena Alonso Herrero and Luis Colina), have been able to resolve for the first time the dusty torus around the massive black hole in the nucleus of the nearby active galaxy NGC 1068.

Continue reading