
Dynamics and Topology of Species NetworksUgo Bastolla1, Michael L�assig2, Susanna C. Manrubia1, and Angelo Valleriani31 Centro de Astrobiolog�ia, INTA-CSIC, Ctra. de Ajalvir Km. 4, 28850 Torrejn deArdoz, Madrid, Spain2 Institut f�ur theoretische Physik, Universit�at zu K�oln, Z�ulpicher Strasse 77, 50937K�oln (Germany)3 Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany)Abstract. We study communities formed by a large number of species, which are anexample of dynamical networks in biology. Interactions between species, such as prey-predator relationships and mutual competition, de�ne the links of these networks.They also govern the dynamics of their population sizes. This dynamics acts as aselection mechanism, which can lead to the extinction of species. Adaptive changesof the interactions or the generation of new species involve random mutations as wellas selection. We show how this dynamics determines key topological characteristics ofspecies networks. The results are in agreement with observations.1 IntroductionComplex networks are ubiquitous in biology. Recent attention has focused onexamples at the intra-cellular or inter-cellular level, such as transcription regu-latory networks, gene networks, protein networks, or cell signalling. These areregulatory elements transforming genetically encoded information into structureand function or coordinating the actions of several cells. They are often quitecomplicated, and we are only beginning to understand their important structuralelements, let alone their evolutionary genesis.Two complementary properties of biological networks are often discussed:their robustness under short-term environmental 
uctuations or deleterious mu-tations and their evolvability in response to longer term selective forces. Theseresponse characteristics re
ect a fundamental dynamical property: A biologicalnetwork can have multiple and widely di�ering characteristic time scales. It re-mains a challenge for experimentalists and for theorists to quantify the dynamicalproperties and relate them to observed topological features.In this article, we discuss a macroscopic type of biological networks, namelycommunities of many species that interact via predation and competition. Anumber of �eld data are available, describing their large-scale dynamics as wellas their topological structure. We discuss a simple theoretical model that canbe compared to these observations on a quantitative basis. The main conceptualresult is the intimate statistical connection between the long-term dynamics andtypical network structures: Evolution shapes the network topology.Due to the relationship between dynamics and structure, these networks arean interesting subject for theoretical physicists. Clearly, a similar link is expectedalso for their molecular counterparts, and in this aspect the example of species



Dynamics and Topology of Species Networks 293networks may be useful for model building in a more general context. However,topological characteristics are seen to depend quite sensitively on, for example,the level of competition between species. Thus, the reader should be cautionednot to expect one universal theory of biological networks.Species networks in nature have been studied on quite di�erent scales of spaceand time. Ecologists' attention has focused on food webs, i.e., communities of ani-mal species in a closed environment where food chains can be observed. Fig. 1(a)shows the graph of such a network, each arrow representing a prey-predator re-lationship. Despite large variations in size and environmental conditions, largeecosystems share a few important topological characteristics: (i) Every specieslives at a certain trophic level. The level number can be de�ned as the mini-mum, the maximum or a suitable average length of its relevant `downward' foodchains; the di�erences between these de�nitions turn out not to be signi�cantfor the statistical properties of food webs we discuss here. Species at level onefeed from external resources. (ii) The number of trophic levels is small, typicallybetween three and seven. (iii) Most species have a small number of relevant preyspecies (typically around three), mainly from the next lower level. (iv) The num-ber of species at level l increases with l for lower values of l and decreases againsharply for higher l [1,2], see Fig. 1(b). Networks of co-evolving species thus havea characteristic shape.Evolutionary biologists and paleontologists have a di�erent point of view onspecies communities. They record adaptive changes and extinctions of speciesand the arrival of new species. More than 99% of the species that have everexisted are extinct. It is only the slight excess of speciations over extinctionsin the last 600 million years that has produced our diverse biosphere [3]. Thedynamics of species numbers can be quite intermittent. Periods of relative stasis(� 104�6 years) alternate with bursts of extinctions and or speciations, leadingto large 
uctuations in the number of species [4,5]. It has been argued that thesetemporal patterns are generated by the complex interactions between species[6,7] and the resulting correlations, rather than by external variations alone.These complementary descriptions refer to di�erent time scales. Over shortintervals, the relevant variations in a species network are in the population num-bers (this is referred to as population dynamics), while the network structure(i.e., the species and their interaction links) remains fairly robust. The averagetime between network changes (extinctions, speciations, or adaptive changes)is much longer. However, as shown by recent �eld observations and theoreticalresults on sympatric speciation, also structural changes can be rather rapid (seethe article by Rost and L�assig in this volume). So a strict separation of therelevant time scales should not always be assumed. Moreover, the network in-teractions induce large correlations and 
uctuations. For example, an extinctionmay trigger rapid other extinctions and subsequent speciations. A statistical en-semble emerges from averaging over yet longer time intervals containing manyspeciations and extinctions, and this statistics is the subject of the article.Classical work in mathematical biology has established stability criteria fornetworks with random interactions gij [8]. They are, however, of limited use



294 Ugo Bastolla et al.for real ecosystems where the interactions are not random, but are themselvessubject to selection. Only recently, a model for species networks with ratherdetailed interactions has been formulated and analyzed by numerical simulations[10] (see the article by Quince et. al. in this volume). Another class of recentmodels focuses directly on the dynamics of extinctions and speciations. Thesemodels have no explicit population dynamics and mostly random topology, withthe important exception of Ref. [11].Here we discuss the simplest models of species networks that can be comparedto observations on a quantitative basis. These models are introduced in Section2. The global shape of the model networks can be obtained from an approximateanalytical calculation (see Section 3). The underlying dynamics and the resultinglocal 
uctuations are discussed in Section 4.2 Modelling species networksA model for species communities has to specify the type of interactions and theresulting population dynamics, as well as the slower dynamics of the networkitself, that is, of its nodes and links.2.1 Species interactions and population dynamicsLotka-Volterra equations. The simplest population dynamics for a commu-nity of species with population numbers Ni(t) is1Ni dNidt = sXj=1 gijNj + hi (i = 1; : : : ; s) ; (1)a set of coupled di�erential equations for the relative growth rates. The coe�-cients gij represent interactions between species, the most important of which arepredation and competition. Accordingly, we decompose the interaction matrixinto a predation part and a competition part,gij = 
ij � �ij ; (2)which are de�ned below. The terms hi denote intrinsic production or decay rates.This type of equations, as well as many generalizations thereof, has been usedto model coexistence, invasions, and adaptive change of populations. Of greatimportance is the conceptual connection to mathematical game theory [12]. Aset of populations (N1; : : : ; NS) represents a mixed strategy in a game withpayo� matrix gij . An optimal strategy of this game { called Nash equilibrium{ can often be realized as a stable �xed point (N�1 ; : : : ; N�S) of an associatedLotka-Volterra dynamics. This explains how strategic optimization is reachedin biological systems through reproductive success, with no need for rationalthinking.Predation denotes here any interaction between two species i and j that isadvantageous for i and disadvantageous for j. It is described by matrix elements
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(a) (b)Fig. 1. (a) The Pamlico estuary foodweb in North Carolina, consisting of 14 species(�lled circles) at four trophic levels. Detritus, dinolagellates and diatoms are at thebottom level (l = 1) and feed from external resources (empty symbols). There is asingle trophic group at the highest level (l = 4), formed by the predatory �shes Roccusand Cynoscion. Arrows point from prey to predator; dashed lines connect species pairswith a nonzero link overlap (see text). Data from [1]; the level is de�ned here by thelongest relevant food chain. (b) Average species numbers per level for a set of naturalecosystems, taken from Ref. [1] (empty symbols) and [9] (�lled circles). This last casecorresponds to an average over 61 food webs, most of which are empty at high levels.
ij > 0 and 
ji < 0, taken for simplicity to be proportional, 
ij = �j
jij. Thematrix 
ij is sparse in natural systems. Its nonzero matrix elements de�ne thepredation network, which is represented by solid lines in Fig. 1(a). The produc-tivity of a species i is de�ned as the net contribution of predation to its growthrate, Pi � Xj2�(i) 
ijNj � Xj2�(i) 
jiNj ; (3)where �(i) is the set of its prey species and �(i) the set of its predators.Competition is the mutual interference of two species i and j in each other'slivelihood. Again for simplicity, it is described by a symmetric matrix, �ij =�ji > 0. Competition takes place for nesting places, mating opportunities, andother resources not explicitly represented in the model. It is strongest betweenindividuals of the same species, but also occurs between di�erent species [13].This interaction turns out to be the main limiting factor for the coexistence ofspecies in a common network.We set the intra-species competition �ii = 1; thisnormalization amounts to an appropriate choice of the time scale in (1). It isthen a natural choice to quantify the inter-species competition in terms of the



296 Ugo Bastolla et al.predation overlap�ij � Xk2�(i)\�(j) 
ik
jk,s Xk2�(i) 
2ik Xk2�(j) 
2jk : (4)We set �ij = ��ij for i 6= j with a coupling constant � < 1. The nonzero matrixelements �ij de�ne the overlap network, which is represented by dashed linesin Fig. 1(a). It is typically sparse as well in natural systems. The inter-speciescompetition load of a species i is de�ned asQi � �Xj 6=i �ijNj : (5)Fixed points, viability threshold. The population dynamics (1) can nowbe written as 1Ni dNidt = (Pi �Qi � �i)Ni �N2i : (6)In general, the population numbers will converge to a stable �xed point of theform N�i = Pi(N�1 ; : : : ; N�s )�Qi(N�1 ; : : : ; N�s )� �i : (7)Furthermore, we require a minimum population size Nc for viable species, andcount all species with N�i < Nc as extinct. A uniform death rate �i = � is anequivalent cuto� for small population sizes.External resources. The species community is maintained by a number ofexternal resources, which are represented as extra `populations' Ni with hi =
i;0R and predators only (i.e., 
ij � 0 and �ij = 0 for all j). The externalresources and the viability threshold play the role of boundary conditions forthe population dynamics. The dimensionless parameter R=Nc � 1 turns out tocontrol the vertical size of the network, i.e., the length of food chains.2.2 Network dynamicsAs explained above, the population dynamics can lead to the extinction of one ormore species, i.e., to the loss of nodes in the species network. The other changesin the network structure are adaptive mutations of the links 
ij and speciations,which generate additional nodes.At the molecular level, most mutations are neutral or deleterious. In thise�ective model, however, neutral mutations are not taken into account and thee�ect of deleterious mutations (the so-called mutation load) enters only throughthe viability threshold Nc and the death rate �. Only rare advantageous muta-tions leading to viable mutants are represented explicitly.



Dynamics and Topology of Species Networks 297These mutations are modeled as follows. Consider the bare predation matrixwith integer coe�cients xij = 0; 1; : : : ; x0. These de�ne the coe�cients 
ij > 0by 
ij = 
0 x0xijx0 +Pk2�(i) xik for j 2 �(i): (8)Here 
0 is the overall predation strength, and x0 > 0 is a saturation scale. Forwell-adapted species (i.e., for Pk2�(i) xik � x0), increasing predation on oneresource implies an equal decrease of predation on the other resources.We assume the population dynamics has settled at a �xed point with s viablespecies, (N�1 ; : : : ; N�s ). One species i is chosen randomly as parent species. Wedenote by ci the number of its prey species. Now we introduce a mutant of thespecies i, which is labelled as a new `species' i0 with initial population size Ni0 oforder Nc. It di�ers from its parent species by a single bare predation coe�cient.Either one of the ci existing links xij > 0 is modi�ed, xi0j = xij � 1, or a newlink xi0j = 1 is created randomly; each of these ci + 1 di�erent cases is chosenwith equal probability 1=(ci + 1). The mutant has a di�erent productivity Pi0and a di�erent competition load Qi0 , which includes a contribution �ii0N�i fromthe competition with the parent. The viability condition for the mutant readsPi0 �Qi0 > �+Nc; the sign of the link modi�cation is chosen at random.A viable mutation generates an unstable perturbation of the �xed point(N�1 ; : : : ; N�s ). The mutant population Ni0 grows, leading to the temporary co-existence of (s + 1) populations. We assume mutations are so rare that thepopulation dynamics reaches a �xed point (N�01 ; : : : ; N�0s0 ) before a new mutationtakes place1. This population dynamics acts as selection. The new �xed pointhas s0 � s + 1 species. In most cases, the parent species i is replaced by themutant i0, which is counted as an adaptive mutation of i. In some cases, if theoverlap �ii0 is small enough, the species i and i0 coexist at the new �xed point;this is a speciation.3 The shape of a species networkHere we derive the global shape of a food web in a `mean-�eld' approximation,following ref. [14]. Details of the dynamics are not needed at this stage. It issu�cient to assume that the mutation-selection process maintains a broad dis-tribution of productivitities and, hence, of biomasses. This asssumption is wellsupported by �eld observations; it re
ects the diversity of habitats and ecolog-ical niches. In the framework of the network model, it can be veri�ed by thenumerical simulations discussed in section 4.1 Of course, any mathematical �xed point of Eq. (1) is reached only after in�nitetime. However, the time-dependent population numbersNi(t) get exponentially closeto the corresponding �xed point values for large times. In practice, the numericalintegration of (1) is carried out until the number of species with Ni(t) < Nc nolonger varies.



298 Ugo Bastolla et al.Throughout this section, we disregard 
uctuations of the predation coe�-cients and set 
ij = 
+ if j is prey of i and 
ij = �
� = ��
+ if i is prey of j,with 0 < � < 1.To illustrate of the relative roles played by predation and competition, weanalyse �rst two types of simple networks, before we turn to species networks ofgeneral topology.3.1 A single food chainA food chain is a community of L species on L trophic levels where species atlevel l feed from that at level l�1. All the competition loads vanish, and thus thepopulation numbers at each level are given simply by N�l = Pl � �. Hence, theentire chain is viable if Pl > Pc for all species l, with the productivity thresholdPc = �+Nc : (9)The productivity of a species at level l isPl = 
+N�l�1 � 
�N�l+1 (l = 1; : : : ; L) (10)and P0 = �
1N�1 , with the boundary condition N�L+1 = 0. These equations canbe solved exactly by recursion starting from the top level l = L. Asymptotically,we obtain an exponential decrease in the biomasses for increasing level number.In the biologically relevant case 
+ � 
�, we getN�l = 
+N�l�1 � �1 + 
� ; (11)the resulting length of the food chain scales asL � log� RNc + f(
�)�� (12)with some function f(
�). The important qualitative conclusion is that foodchains are always short, as observed in real systems. The parameters � and Ncare seen to be equivalent viability cuto�s for the length of the chain.3.2 A single trophic layerA trophic layer is a group of S species at the same level. These species havea signi�cant overlap in their predation links and a resulting competition load.We assume there is no predation within the layer, that is, the productivities Pidepend only on the interactions with `external' species. Here we consider the Pias �xed and concentrate on the e�ects of the direct competition terms Qi. In themean �eld approximation, we replace the individual link overlaps �ij betweendi�erent species by their expectation value ��, which has to be determined self-consistently. Consider, for example, a trophic layer feeding from a set of S0 prey



Dynamics and Topology of Species Networks 299species with an average number of �c prey species per predator species. We usea simple approximation for the link overlap which (i) takes into account thata con�guration with zero overlap exists for S � max(S0=�c; 1) and (ii) assumesrandom predation for larger values of S. This approximation reads��(S; S0) = � 0 if S � max(S0=�c; 1)min(�c=S0; 1) if S > max(S0=�c; 1) : (13)The competition load in eq. (7) can now be evaluated approximately, yieldingthe �xed point populations N�i = Pi � ���S �N � �1� ��� : (14)The average �N � S�1PSi=1N�i is given by�N = �P � �1 + ���(S � 1) : (15)Inserting the viability condition N�i > Nc into (14) determines the productivitythreshold Pc = �+ (1� ���)Nc + ���S �N : (16)For small values of S, we have �� = 0 by (13), and (16) reduces to (9). Withincreasing S, the threshold increases as well.The actual productivites Pi are constantly changing as a consequence ofthe mutations of species i as well as those of the other species. The statisticalassumption used here (and veri�ed in the next section) is that the productivitiesPi are drawn from a broad probability distribution given by �(q) � Prob(Pi= �P <q). This distribution is assumed to be independent of S; that is, the number ofspecies enters only via the average �P . The qualitative results do not dependstrongly on the form of �(q); we use the simple approximation�(q) = q � q02(1� q0) : (17)The expectation value of the smallest productivity Pmin in a community of Sspecies can then be estimated from the relation S�(Pmin= �P ) = O(1), givingPmin = �q0 + 1� q0S � �P : (18)The species community becomes unstable if the least productive species fallsbelow the viability threshold. Equating (16) and (18) therefore gives an implicitrelation for S as a function of �P=Nc, �=Nc, the relative productivity spread q0,and the average pairwise competition load ��� given by (13). That is, competitiondetermines the number of `ecological niches' in a trophic level as a function of the



300 Ugo Bastolla et al.prey diversity and the competition strength �. For su�ciently large �, only non-overlapping species can coexist, i.e., S = max(S0=�c; 1). The number of ecologicalniches increases with decreasing � and increasing productivity spread q0. Thisresult generalizes the well known theorem of competitive exclusion [15], whichstates the condition for coexistence of two competing species. Note that thislimiting e�ect on the number of species exists independently of the populationnumbers. It is indeed crucial for the buildup of high population numbers at thelower trophic levels. For example, a trophic level feeding from resources of sizeR� max(�;Nc) acquires an extensive population number per species, �N � R=Swith S asymptotically independent of R. Without competitive exclusion (� = 0),speciations would further increase S and eventually lead to an extensive numberof marginally viable species, S � R= �N with �N of order Nc. Such a level couldnot support sizeable predation from above.3.3 The full networkWe now turn to a full ecological network with L trophic levels. In the mean �eldapproximation, we treat all species at the same level on an equal footing andderive self-consistent equations for the level averages of population and speciesnumber, �Nl and Sl (l = 1; : : : ; L). The average productivities �Pl satisfy therecursion relations �Pl = 
+�c �Nl�1 � 
��c(Sl+1=Sl) �Nl+1 ; (19)

0 2 4 6 8
l

0

2

4

6

8

Sp
ec

ie
s

0 2 4 6 8
l

10
0

10
1

10
2

10
3

10
4

B
io

m
as

s
(a) (b)

Fig. 2. The shape of ecosystems. (a) The species numbers Sl (1 � l � L) for networkswith L trophic levels. The parameters are �c = 3, 
+ = 0:3, 
� = 2:0, � = 0:2,q0 = 0:35, �=Nc = 1, and R=Nc = 2� 103; 104; 4� 104; 2� 105; and 5� 105 for thecases L = 4; 5; 6; 7, and 8, respectively. (b) The average population numbers �Nl forthe same cases as in (a).



Dynamics and Topology of Species Networks 301where we assume that the species at every level predate only on the species at thenext lower level. The average number �c of predation links per predator is taken tobe independent of l; this is indeed suggested by �eld data. The average numberof predators per prey is then simply �cSl+1=Sl. The productivity �Pl is linked to�Nl and Sl as in (15), using for ��(Sl; Sl�1) the approximation (13). Hence, therelations (19) determine the population numbers given the species numbers. Thelatter are again limited by the stability criteria Sl�(Pc;l= �Pl) = O(1) with theminimum productivities Pc;l given as in (16); these relations determine the Slgiven the �Nl. The coupled set of equations can be solved iteratively. Finally, thenumber of levels L follows from the condition �NL � Nc, which is equivalent toSL � 1.Over a wide range of relevant parameters, these networks have the charac-teristic shape shown in the example of Fig. 2: The species numbers Sl increasewith l at low levels due to the increasing prey diversity, which opens up moreand more niches. They reach a maximum at an intermediate level and decreaseagain at higher levels, because more and more species have population numberstoo low to support further predation. Hence, these two regimes re
ect the twokinds of species interactions. The population numbers show an approximatelyexponential decrease in both regimes, just like for a single vertical chain. Hence,L is always small, in agreement with observations and with the results of [10,16].

Fig. 3. A trophic bilayer in a stationary environment. The number of species at thelower level and their predation gain (dashed lines) are kept constant in time as appro-priate for external resources. We focus on the dynamics of the species at the upperlevel and of the predation links within the bilayer (solid lines).4 The local structure and 
uctuationsWe now discuss the long-term dynamics of species networks, following ref. [17].In the present model, a single step of this dynamics consists of a mutation andthe subsequent selection by population dynamics; see section 2.1 above. Thecumulative e�ect of many such steps is large 
uctuations in the size of the



302 Ugo Bastolla et al.networks and in many of its local characteristics. Here we illustrate this forthe particularly simple case of a trophic bilayer in a stationary environment, asshown in Fig. 3. The number of species at the lower level and their predationgain are kept constant in time as appropriate for external resources. We focuson the dynamics of the species at the upper level (the predators) and of theprey-predation links between the two levels. Links to higher levels are neglected.Fig. 4 shows the stationary 
uctuations in the number of viable species at theupper level. Here the `time' coordinate T is just the number of mutation-selectionsteps.
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Fig. 4. Fluctuations in the number s(T ) of viable species. Each time-step correspondsto an attempted mutation or speciation.This should be compared to the time series for the population number N(T )of a randomly chosen `tracer' species i shown in Fig. 5(a). The 
uctuations orig-inate from the `noise' of its own adaptive mutations and speciations and thoseof the other species. We can think of them as a random walk in N with variablestep size. Since large values of N(T ) are suppressed, the random walk is essen-tially constrained to the range Nc < N(t) < O( �N) with an absorbing boundaryat N = Nc. Hence, every species faces a continuous threat of extinction, whichleads to an exponentially decaying survival probability. It will eventually getextinct when the pace of its own adaptations cannot keep up with the changesin its environment. This is the well-known Red Queen e�ect of co-evolutionarysystems. Extinct species are replaced by speciations, leading to a long-term bal-ance. The resulting stationary probability distribution of population numbersis shown in Fig. 5(b). It is indeed a broad distribution as anticipated in theprevious section.
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Fig. 5. (a) The fate of a given species. Large 
uctuations in the population numberor biomass N(T ) can be given by the extinction or arrival of a strong competitor.Typically, the sudden decline of a population is caused by the arrival of a daughter thattakes its place in the network. (b) The corresponding stationary probability distributionP(N).We now return to the e�ect of interactions on the network structure. Fig. 6(a)shows a typical snapshot of the overlap network at � = 1. The network is seen tobe rather sparse: the species are forced into di�erent ecological niches with littlemutual overlap. In this example, there are 10 di�erent resources and 9 predators.A typical predator species feeds on about 3:5 resources. It has nonzero overlapwith 2 other predators on average; a random pair of predator species has anaverage overlap of 0:04 (clearly, these network characteristics depend on theoverall size of the network).If competition is weak (e.g. � = 0:5), typical overlap networks are muchdenser, see �g. 6(b). The number of predators strongly increases, while theirpopulation numbers decrease. In this example, there are now 300 predators,each having a nonzero overlap to about 40 others. Hence, the system is no longerorganized in ecological niches.5 ConclusionWe have seen that the structure of species networks is shaped by evolutionaryforces over long periods of time. Some of the resulting features are far from ran-dom: these networks are graded into trophic levels with a characteristic `shape'de�ned by the level dependence of the number of species.Darwinian evolution is a coupled process of mutations and selection. At thelevel of species communities, selection takes place through the dynamics of popu-lation numbers, and this dynamics depends on the interactions between species.
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a) b)Fig. 6. (a) The overlap network at the upper level of a trophic bilayer for large compe-tition (� = 1). The network is sparse, the species are organized into ecological nicheswith little mutual overlap. (b) At smaller competition (here � = 0:5), the size of thenetwork strongly increases. Only a fraction of the nodes is shown. A species is connectedto many other species, the ecological niches have disappeared.We have identi�ed two universal selective interactions, which are remarkably sim-ple. Predation is the basic transport of energy in the system, competition forcesthe species into states with little overlap. In physics, mutual avoidance is a wellknown property of fermions. Competitive exclusion may thus be regarded as thePauli principle of co-evolution: It generates the complexity of species networksjust as its quantum-mechanical counterpart does for atoms and molecules.Fig. 6 shows an example of the dependence of the local network structureon species interactions. In a more general context of biological networks, suchrelationships pose an interesting set of what physicists call inverse problems. Canwe deduce from observed structures the evolutionary forces that have producedthem?Biologists have another important way of looking into the past. Phylogenetictrees can be constructed from phenotypical characteristics or from molecularsequences of today's species; molecular trees are becoming more and more ac-curate and complex with the rapidly increasing amount of available data. Theyare a partial record of speciations for those species that have survived to date.Uncovering the connections of their statistical properties with the underlyingco-evolutionary dynamics is a challenging problem for the future.AcknowledgmentM.L. is grateful to the Max-Planck-Institute for Colloids and Interfaces for itshospitality throughout the duration of this work.
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