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Abstract. We study communities formed by a large number of species, which are an
example of dynamical networks in biology. Interactions between species, such as prey-
predator relationships and mutual competition, define the links of these networks.
They also govern the dynamics of their population sizes. This dynamics acts as a
selection mechanism, which can lead to the extinction of species. Adaptive changes
of the interactions or the generation of new species involve random mutations as well
as selection. We show how this dynamics determines key topological characteristics of
species networks. The results are in agreement with observations.

1 Introduction

Complex networks are ubiquitous in biology. Recent attention has focused on
examples at the intra-cellular or inter-cellular level, such as transcription regu-
latory networks, gene networks, protein networks, or cell signalling. These are
regulatory elements transforming genetically encoded information into structure
and function or coordinating the actions of several cells. They are often quite
complicated, and we are only beginning to understand their important structural
elements, let alone their evolutionary genesis.

Two complementary properties of biological networks are often discussed:
their robustness under short-term environmental fluctuations or deleterious mu-
tations and their evolvability in response to longer term selective forces. These
response characteristics reflect a fundamental dynamical property: A biological
network can have multiple and widely differing characteristic time scales. It re-
mains a challenge for experimentalists and for theorists to quantify the dynamical
properties and relate them to observed topological features.

In this article, we discuss a macroscopic type of biological networks, namely
communities of many species that interact via predation and competition. A
number of field data are available, describing their large-scale dynamics as well
as their topological structure. We discuss a simple theoretical model that can
be compared to these observations on a quantitative basis. The main conceptual
result is the intimate statistical connection between the long-term dynamics and
typical network structures: Evolution shapes the network topology.

Due to the relationship between dynamics and structure, these networks are
an interesting subject for theoretical physicists. Clearly, a similar link is expected
also for their molecular counterparts, and in this aspect the example of species
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networks may be useful for model building in a more general context. However,
topological characteristics are seen to depend quite sensitively on, for example,
the level of competition between species. Thus, the reader should be cautioned
not to expect one universal theory of biological networks.

Species networks in nature have been studied on quite different scales of space
and time. Ecologists’ attention has focused on food webs, i.e., communities of ani-
mal species in a closed environment where food chains can be observed. Fig. 1(a)
shows the graph of such a network, each arrow representing a prey-predator re-
lationship. Despite large variations in size and environmental conditions, large
ecosystems share a few important topological characteristics: (i) Every species
lives at a certain trophic level. The level number can be defined as the mini-
mum, the maximum or a suitable average length of its relevant ‘downward’ food
chains; the differences between these definitions turn out not to be significant
for the statistical properties of food webs we discuss here. Species at level one
feed from external resources. (ii) The number of trophic levels is small, typically
between three and seven. (iii) Most species have a small number of relevant prey
species (typically around three), mainly from the next lower level. (iv) The num-
ber of species at level [ increases with [ for lower values of I and decreases again
sharply for higher [ [1,2], see Fig. 1(b). Networks of co-evolving species thus have
a characteristic shape.

Evolutionary biologists and paleontologists have a different point of view on
species communities. They record adaptive changes and extinctions of species
and the arrival of new species. More than 99% of the species that have ever
existed are extinct. It is only the slight excess of speciations over extinctions
in the last 600 million years that has produced our diverse biosphere [3]. The
dynamics of species numbers can be quite intermittent. Periods of relative stasis
(~ 10*~6 years) alternate with bursts of extinctions and or speciations, leading
to large fluctuations in the number of species [4,5]. It has been argued that these
temporal patterns are generated by the complex interactions between species
[6,7] and the resulting correlations, rather than by external variations alone.

These complementary descriptions refer to different time scales. Over short
intervals, the relevant variations in a species network are in the population num-
bers (this is referred to as population dynamics), while the network structure
(i.e., the species and their interaction links) remains fairly robust. The average
time between network changes (extinctions, speciations, or adaptive changes)
is much longer. However, as shown by recent field observations and theoretical
results on sympatric speciation, also structural changes can be rather rapid (see
the article by Rost and Léssig in this volume). So a strict separation of the
relevant time scales should not always be assumed. Moreover, the network in-
teractions induce large correlations and fluctuations. For example, an extinction
may trigger rapid other extinctions and subsequent speciations. A statistical en-
semble emerges from averaging over yet longer time intervals containing many
speciations and extinctions, and this statistics is the subject of the article.

Classical work in mathematical biology has established stability criteria for
networks with random interactions g;; [8]. They are, however, of limited use
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for real ecosystems where the interactions are not random, but are themselves
subject to selection. Only recently, a model for species networks with rather
detailed interactions has been formulated and analyzed by numerical simulations
[10] (see the article by Quince et. al. in this volume). Another class of recent
models focuses directly on the dynamics of extinctions and speciations. These
models have no explicit population dynamics and mostly random topology, with
the important exception of Ref. [11].

Here we discuss the simplest models of species networks that can be compared
to observations on a quantitative basis. These models are introduced in Section
2. The global shape of the model networks can be obtained from an approximate
analytical calculation (see Section 3). The underlying dynamics and the resulting
local fluctuations are discussed in Section 4.

2 Modelling species networks

A model for species communities has to specify the type of interactions and the
resulting population dynamics, as well as the slower dynamics of the network
itself, that is, of its nodes and links.

2.1 Species interactions and population dynamics

Lotka-Volterra equations. The simplest population dynamics for a commu-
nity of species with population numbers N;(t) is

1dN;, O .
N :Zgz'ij"‘hi (i=1,...,5), (1)
i =t

a set of coupled differential equations for the relative growth rates. The coeffi-
cients g;; represent interactions between species, the most important of which are
predation and competition. Accordingly, we decompose the interaction matrix
into a predation part and a competition part,

9ij = vij — Bij » (2)

which are defined below. The terms h; denote intrinsic production or decay rates.
This type of equations, as well as many generalizations thereof, has been used
to model coexistence, invasions, and adaptive change of populations. Of great
importance is the conceptual connection to mathematical game theory [12]. A

set of populations (Ny,..., Ng) represents a mixed strategy in a game with
payoff matrix g;;. An optimal strategy of this game — called Nash equilibrium
— can often be realized as a stable fixed point (Ny,...,N§) of an associated

Lotka-Volterra dynamics. This explains how strategic optimization is reached
in biological systems through reproductive success, with no need for rational
thinking.

Predation denotes here any interaction between two species ¢ and j that is
advantageous for i and disadvantageous for j. It is described by matrix elements
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Fig.1. (a) The Pamlico estuary foodweb in North Carolina, consisting of 14 species
(filled circles) at four trophic levels. Detritus, dinolagellates and diatoms are at the
bottom level (I = 1) and feed from external resources (empty symbols). There is a
single trophic group at the highest level (I = 4), formed by the predatory fishes Roccus
and Cynoscion. Arrows point from prey to predator; dashed lines connect species pairs
with a nonzero link overlap (see text). Data from [1]; the level is defined here by the
longest relevant food chain. (b) Average species numbers per level for a set of natural
ecosystems, taken from Ref. [1] (empty symbols) and [9] (filled circles). This last case
corresponds to an average over 61 food webs, most of which are empty at high levels.

vi; > 0 and ~;; < 0, taken for simplicity to be proportional, v;; = Alvy;;|. The
matrix v;; is sparse in natural systems. Its nonzero matrix elements define the
predation network, which is represented by solid lines in Fig. 1(a). The produc-
tivity of a species i is defined as the net contribution of predation to its growth
rate,

P = Z Yi; N; — Z Y5 Nj (3)

jeE™(1) JEII(4)

where 7 (i) is the set of its prey species and II(z) the set of its predators.
Competition is the mutual interference of two species i and j in each other’s
livelihood. Again for simplicity, it is described by a symmetric matrix, 8;; =
Bji; > 0. Competition takes place for nesting places, mating opportunities, and
other resources not explicitly represented in the model. It is strongest between
individuals of the same species, but also occurs between different species [13].
This interaction turns out to be the main limiting factor for the coexistence of
species in a common network.We set the intra-species competition 3;; = 1; this
normalization amounts to an appropriate choice of the time scale in (1). It is
then a natural choice to quantify the inter-species competition in terms of the
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predation overlap

pii= >, ’Yik%‘k/ SR> (4)
kerm(i)Nm(j)

kem(i) kem(4)

We set 3;; = Bp;; for @ # j with a coupling constant 3 < 1. The nonzero matrix
elements p;; define the overlap network, which is represented by dashed lines
in Fig. 1(a). It is typically sparse as well in natural systems. The inter-species
competition load of a species 7 is defined as

QiEIBZPi]’N]’ : (5)
J7#i
Fixed points, viability threshold. The population dynamics (1) can now
be written as

1 dN;
AT = (P, - Qi —a;)N; — N} . (6)

In general, the population numbers will converge to a stable fixed point of the
form

Ni*:Pi(Nfa---aNs*)_Qi(Nfa'-'aNs*)_ai' (7)
Furthermore, we require a minimum population size N, for viable species, and
count all species with N < N, as extinct. A uniform death rate o; = o is an
equivalent cutoff for small population sizes.

External resources. The species community is maintained by a number of
external resources, which are represented as extra ‘populations’ N; with h; =
vi,0R and predators only (i.e., 7;; < 0 and 3;; = 0 for all j). The external
resources and the viability threshold play the role of boundary conditions for
the population dynamics. The dimensionless parameter R/N, > 1 turns out to
control the vertical size of the network, i.e., the length of food chains.

2.2 Network dynamics

As explained above, the population dynamics can lead to the extinction of one or
more species, i.e., to the loss of nodes in the species network. The other changes
in the network structure are adaptive mutations of the links ;; and speciations,
which generate additional nodes.

At the molecular level, most mutations are neutral or deleterious. In this
effective model, however, neutral mutations are not taken into account and the
effect of deleterious mutations (the so-called mutation load) enters only through
the viability threshold N, and the death rate a. Only rare advantageous muta-
tions leading to viable mutants are represented explicitly.
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These mutations are modeled as follows. Consider the bare predation matrix
with integer coefficients z;; = 0,1,...,zo. These define the coefficients v;; > 0
by

ToTij
To + D en(s) Tik

Yii = Yo for j € m(i). (8)

Here 7, is the overall predation strength, and a:o > 0 is a saturation scale. For
well-adapted species (i.e., for Zke Z;x > o), increasing predation on one
resource implies an equal decrease otg predation on the other resources.

We assume the population dynamics has settled at a fixed point with s viable
species, (Ny,...,NZ?). One species 7 is chosen randomly as parent species. We
denote by ¢; the number of its prey species. Now we introduce a mutant of the
species i, which is labelled as a new ‘species’ 7’ with initial population size N; of
order N,. It differs from its parent species by a single bare predation coefficient.
Either one of the ¢; existing links z;; > 0 is modified, z;; = z;; £ 1, or a new
link z;; = 1 is created randomly; each of these c¢; + 1 different cases is chosen
with equal probability 1/(c; + 1). The mutant has a different productivity P;
and a different competition load @;, which includes a contribution p;; N} from
the competition with the parent. The viability condition for the mutant reads
Py — Qy > a+ Ng; the sign of the link modification is chosen at random.

A viable mutation generates an unstable perturbation of the fixed point
(Ny,...,NZ). The mutant population N; grows, leading to the temporary co-
existence of (s + 1) populations. We assume mutations are so rare that the
population dynamics reaches a fixed point (N;',..., N}/) before a new mutation
takes place'. This population dynamics acts as selection. The new fixed point
has s’ < s + 1 species. In most cases, the parent species 7 is replaced by the
mutant i/, which is counted as an adaptive mutation of 7. In some cases, if the
overlap p;; is small enough, the species i and i’ coexist at the new fixed point;
this is a speciation.

3 The shape of a species network

Here we derive the global shape of a food web in a ‘mean-field’ approximation,
following ref. [14]. Details of the dynamics are not needed at this stage. It is
sufficient to assume that the mutation-selection process maintains a broad dis-
tribution of productivitities and, hence, of biomasses. This asssumption is well
supported by field observations; it reflects the diversity of habitats and ecolog-
ical niches. In the framework of the network model, it can be verified by the
numerical simulations discussed in section 4.

1 Of course, any mathematical fixed point of Eq. (1) is reached only after infinite
time. However, the time-dependent population numbers N;(t) get exponentially close
to the corresponding fixed point values for large times. In practice, the numerical
integration of (1) is carried out until the number of species with N;(f) < N, no
longer varies.
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Throughout this section, we disregard fluctuations of the predation coeffi-
cients and set v;; = v if j is prey of ¢ and v;; = —y_ = — A, if ¢ is prey of j,
with 0 < A < 1.

To illustrate of the relative roles played by predation and competition, we
analyse first two types of simple networks, before we turn to species networks of
general topology.

3.1 A single food chain

A food chain is a community of L species on L trophic levels where species at
level [ feed from that at level [ — 1. All the competition loads vanish, and thus the
population numbers at each level are given simply by N;* = P, — a. Hence, the
entire chain is viable if P, > P, for all species [, with the productivity threshold

PC =« + Nc . (9)
The productivity of a species at level [ is
Pr=~:N'y —7-Ni, (t=1,...,L) (10)

and Py = —y1 Ny, with the boundary condition N}, = 0. These equations can
be solved exactly by recursion starting from the top level [ = L. Asymptotically,
we obtain an exponential decrease in the biomasses for increasing level number.
In the biologically relevant case v < vy, we get

a

. . 11
. (11)

N =74 N

the resulting length of the food chain scales as

L ~ log (ﬁw) (12)

with some function f(y_). The important qualitative conclusion is that food
chains are always short, as observed in real systems. The parameters a and N,
are seen to be equivalent viability cutoffs for the length of the chain.

3.2 A single trophic layer

A trophic layer is a group of S species at the same level. These species have
a significant overlap in their predation links and a resulting competition load.
We assume there is no predation within the layer, that is, the productivities P;
depend only on the interactions with ‘external’ species. Here we consider the P;
as fixed and concentrate on the effects of the direct competition terms @);. In the
mean field approximation, we replace the individual link overlaps p;; between
different species by their expectation value g, which has to be determined self-
consistently. Consider, for example, a trophic layer feeding from a set of S’ prey
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species with an average number of ¢ prey species per predator species. We use
a simple approximation for the link overlap which (i) takes into account that
a configuration with zero overlap exists for S < max(S’/¢,1) and (ii) assumes
random predation for larger values of S. This approximation reads

0 if S <max(S'/¢, 1)

PS8, S') = {min(é/S’, 1) if § > max(5'/c, 1) 1

The competition load in eq. (7) can now be evaluated approximately, yielding
the fixed point populations

_Pi—ﬂﬁSN—a

N} 14
;= Bty (14
The average N = S~ Y7 | N7 is given by
_ P—qa
N=————. 15
1+8p(S—1) (18)

Inserting the viability condition N; > N, into (14) determines the productivity
threshold

P,=a+ (1-8p)N.+ BpSN . (16)

For small values of S, we have g = 0 by (13), and (16) reduces to (9). With
increasing S, the threshold increases as well.

The actual productivites P; are constantly changing as a consequence of
the mutations of species i as well as those of the other species. The statistical
assumption used here (and verified in the next section) is that the productivities
P; are drawn from a broad probability distribution given by ¢(q) = Prob(P;/P <
q). This distribution is assumed to be independent of S; that is, the number of
species enters only via the average P. The qualitative results do not depend
strongly on the form of é(g); we use the simple approximation

q—qo
2(1 - QO)

The expectation value of the smallest productivity Ppin in a community of S
species can then be estimated from the relation S®(Ppmin/P) = O(1), giving

®(q) = (17)

Pmin = <q0 + L Sq0> pP. (18)

The species community becomes unstable if the least productive species falls
below the viability threshold. Equating (16) and (18) therefore gives an implicit
relation for S as a function of P/N,, a/N,, the relative productivity spread g,
and the average pairwise competition load 8p given by (13). That is, competition
determines the number of ‘ecological niches’ in a trophic level as a function of the
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prey diversity and the competition strength 3. For sufficiently large 3, only non-
overlapping species can coexist, i.e., S = max(S'/¢, 1). The number of ecological
niches increases with decreasing 8 and increasing productivity spread gg. This
result generalizes the well known theorem of competitive exclusion [15], which
states the condition for coexistence of two competing species. Note that this
limiting effect on the number of species exists independently of the population
numbers. It is indeed crucial for the buildup of high population numbers at the
lower trophic levels. For example, a trophic level feeding from resources of size
R > max(a, N,) acquires an extensive population number per species, N ~ R/S
with S asymptotically independent of R. Without competitive exclusion (3 = 0),
speciations would further increase S and eventually lead to an extensive number
of marginally viable species, S ~ R/N with N of order N.. Such a level could
not support sizeable predation from above.

3.3 The full network

We now turn to a full ecological network with L trophic levels. In the mean field
approximation, we treat all species at the same level on an equal footing and
derive self-consistent equations for the level averages of population and species
number, N; and S; (I = 1,...,L). The average productivities P, satisfy the
recursion relations

P =4 &Niy — 7-&(Si41/S) Niga (19)

Fig. 2. The shape of ecosystems. (a) The species numbers S; (1 <! < L) for networks
with L trophic levels. The parameters are ¢ = 3, 74+ = 0.3, - = 2.0, A = 0.2,
go = 0.35, a/N. = 1, and R/N. = 2 x 103, 10*, 4 x 10*, 2 x 10°, and 5 x 10° for the
cases L = 4, 5, 6, 7, and 8, respectively. (b) The average population numbers N; for
the same cases as in (a).
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where we assume that the species at every level predate only on the species at the
next lower level. The average number ¢ of predation links per predator is taken to
be independent of [; this is indeed suggested by field data. The average number
of predators per prey is then simply &S;;1/S;. The productivity P; is linked to
N; and S; as in (15), using for p(S;,S;_1) the approximation (13). Hence, the
relations (19) determine the population numbers given the species numbers. The
latter are again limited by the stability criteria S;8(P.;/P;) = O(1) with the
minimum productivities P,; given as in (16); these relations determine the S
given the N;. The coupled set of equations can be solved iteratively. Finally, the
number of levels L follows from the condition Nz ~ N,, which is equivalent to
SL ~ 1.

Over a wide range of relevant parameters, these networks have the charac-
teristic shape shown in the example of Fig. 2: The species numbers S; increase
with | at low levels due to the increasing prey diversity, which opens up more
and more niches. They reach a maximum at an intermediate level and decrease
again at higher levels, because more and more species have population numbers
too low to support further predation. Hence, these two regimes reflect the two
kinds of species interactions. The population numbers show an approximately
exponential decrease in both regimes, just like for a single vertical chain. Hence,
L is always small, in agreement with observations and with the results of [10,16].

O C

Fig. 3. A trophic bilayer in a stationary environment. The number of species at the
lower level and their predation gain (dashed lines) are kept constant in time as appro-
priate for external resources. We focus on the dynamics of the species at the upper
level and of the predation links within the bilayer (solid lines).

4 The local structure and fluctuations

We now discuss the long-term dynamics of species networks, following ref. [17].
In the present model, a single step of this dynamics consists of a mutation and
the subsequent selection by population dynamics; see section 2.1 above. The
cumulative effect of many such steps is large fluctuations in the size of the
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networks and in many of its local characteristics. Here we illustrate this for
the particularly simple case of a trophic bilayer in a stationary environment, as
shown in Fig. 3. The number of species at the lower level and their predation
gain are kept constant in time as appropriate for external resources. We focus
on the dynamics of the species at the upper level (the predators) and of the
prey-predation links between the two levels. Links to higher levels are neglected.

Fig. 4 shows the stationary fluctuations in the number of viable species at the
upper level. Here the ‘time’ coordinate T is just the number of mutation-selection
steps.

50

40 - J

30 |

number of species

20 B

10 L L L L
50000 60000 70000 80000 90000 1le+05
time

Fig. 4. Fluctuations in the number s(T') of viable species. Each time-step corresponds
to an attempted mutation or speciation.

This should be compared to the time series for the population number N (T")
of a randomly chosen ‘tracer’ species ¢ shown in Fig. 5(a). The fluctuations orig-
inate from the ‘noise’ of its own adaptive mutations and speciations and those
of the other species. We can think of them as a random walk in N with variable
step size. Since large values of N(T') are suppressed, the random walk is essen-
tially constrained to the range N, < N(t) < O(N) with an absorbing boundary
at N = N.. Hence, every species faces a continuous threat of extinction, which
leads to an exponentially decaying survival probability. It will eventually get
extinct when the pace of its own adaptations cannot keep up with the changes
in its environment. This is the well-known Red Queen effect of co-evolutionary
systems. Extinct species are replaced by speciations, leading to a long-term bal-
ance. The resulting stationary probability distribution of population numbers
is shown in Fig. 5(b). It is indeed a broad distribution as anticipated in the
previous section.
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Fig.5. (a) The fate of a given species. Large fluctuations in the population number
or biomass N(T') can be given by the extinction or arrival of a strong competitor.
Typically, the sudden decline of a population is caused by the arrival of a daughter that
takes its place in the network. (b) The corresponding stationary probability distribution
P(N).

We now return to the effect of interactions on the network structure. Fig. 6(a)
shows a typical snapshot of the overlap network at 3 = 1. The network is seen to
be rather sparse: the species are forced into different ecological niches with little
mutual overlap. In this example, there are 10 different resources and 9 predators.
A typical predator species feeds on about 3.5 resources. It has nonzero overlap
with 2 other predators on average; a random pair of predator species has an
average overlap of 0.04 (clearly, these network characteristics depend on the
overall size of the network).

If competition is weak (e.g. 3 = 0.5), typical overlap networks are much
denser, see fig. 6(b). The number of predators strongly increases, while their
population numbers decrease. In this example, there are now 300 predators,
each having a nonzero overlap to about 40 others. Hence, the system is no longer
organized in ecological niches.

5 Conclusion

We have seen that the structure of species networks is shaped by evolutionary
forces over long periods of time. Some of the resulting features are far from ran-
dom: these networks are graded into trophic levels with a characteristic ‘shape’
defined by the level dependence of the number of species.

Darwinian evolution is a coupled process of mutations and selection. At the
level of species communities, selection takes place through the dynamics of popu-
lation numbers, and this dynamics depends on the interactions between species.
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a) i ,
Fig. 6. (a) The overlap network at the upper level of a trophic bilayer for large compe-
tition (8 = 1). The network is sparse, the species are organized into ecological niches
with little mutual overlap. (b) At smaller competition (here 8 = 0.5), the size of the
network strongly increases. Only a fraction of the nodes is shown. A species is connected
to many other species, the ecological niches have disappeared.

We have identified two universal selective interactions, which are remarkably sim-
ple. Predation is the basic transport of energy in the system, competition forces
the species into states with little overlap. In physics, mutual avoidance is a well
known property of fermions. Competitive exclusion may thus be regarded as the
Pauli principle of co-evolution: It generates the complexity of species networks
just as its quantum-mechanical counterpart does for atoms and molecules.

Fig. 6 shows an example of the dependence of the local network structure
on species interactions. In a more general context of biological networks, such
relationships pose an interesting set of what physicists call inverse problems. Can
we deduce from observed structures the evolutionary forces that have produced
them?

Biologists have another important way of looking into the past. Phylogenetic
trees can be constructed from phenotypical characteristics or from molecular
sequences of today’s species; molecular trees are becoming more and more ac-
curate and complex with the rapidly increasing amount of available data. They
are a partial record of speciations for those species that have survived to date.
Uncovering the connections of their statistical properties with the underlying
co-evolutionary dynamics is a challenging problem for the future.
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