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Abstract-The dynamical properties of a cellular automata model of forest growth are studied. It is 
shown that fractal and multifractal structures, as well as power-laws (linked to both spatial and 
temporal variables) are generated, involving the appearance of a self-organized critical state. An 
extensive study of a real rainforest has been performed, and it is found that the model recovers very 
well the results of the real case. Some theoretical consequences are outlined. 

1. INTRODUCTION 

Cellular automata (CA) models have been used in recent years to recreate several aspects 
of a wide spectrum of complex systems. They are used as an alternative to a detailed 
description of a system, and it often proves to be enough to account for the main 
properties of it. CA are described by means of a lattice (where elementary automata are 
placed) and some rules of interaction on a local scale are defined. The system is updated in 
discrete time steps, either in a synchronous or an asynchronous fashion. A large class of 
these automata are able to drive themselves to a critical state with a wide range of length 
and time scales [l]. This is a self-organized critical state (SOC), which is characterized by 
free scale phenomena, both in time and in space. It proves to be an attractor for the 
dynamics. 

Well known examples of cellular automata model that exhibit SOC properties are the 
pile of sand [2], the game of life [3] or the forest fire [4]. Although these models represent 
oversimplifications of real systems, it has been postulated that critical states could be 
widely present in nature. Although a critical point is usually a singular state of physical 
systems, where the system can be held by tuning some external field, it is conjectured that 
it might be the natural state for a biological system. This property would also make models 
plausible. Due to the absence of a characteristic scale in the phenomenon described, a 
simple model that skips the smallest details is suitable to reproduce the real dynamics. A 
key property of living systems is their capability to evolve. Evolutionary processes lead to 
changes in the interactions among individuals and as a consequence, different dynamical 
regimes can be explored. In this sense, it has been conjectured that critical states are a 
necessary requirement for evolvability [5]. Systems that display SOC may be the most 
robust and well adapted to external perturbations, and the real evolution under biological 
constraints would lead unfailingly to such states. In recent years it has been shown that 
SOC is a physical process involved in many real systems, from earthquakes [6] to large 
scale evolution [7]. 

In this paper we analyse the behaviour displayed by a CA model of tree growth and 
death. We call it the Forest Game (FG) [8]. The model exhibits the properties of self 
organization in a critical state (power-law distributions) and self-similar spatial patterns. 
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Temporal scale fluctuations in biomass present a l/f noise, a fingerprint of SOC. We 
compare the obtained results with a real rainforest: Barro Colorado Island (BCI), in 
Panama. This particular case is studied using the multifractal formalism and some other 
tools from the theory of critical phenomena. The real forest is identified with a particularly 
interesting place of the parameter space of the model, exactly where a critical transition 
takes place. 

In Section 2, the multifractality of BCI is analysed. The spectra of generalized 
dimensions and correlation functions are calculated, as well as the spatial correlation 
function and some other physical quantities that are shown to follow power-law distribu- 
tions. In Section 3, we present our model, the Forest Game, and analyse the dynamical 
evolution and spatial patterns that the model is able to generate, as a function of some key 
parameters. At the end of the section, we compare the real and the simulated forest: this is 
evidence of a real ecosystem self-organized in or close to a critical point. In Section 4, we 
discuss the implications of our results and outline the future research in this field. 

2. BARR0 COLORADO ISLAND 

2.1. Multifractal measures 

SOC involves the generation of spatial patterns with self-similar properties. Often (and in 
particular for ecosystems) only a spatial snapshot of the underlying dynamical state is 
available. The snapshot can be informative if an adequate set of statistical measures is 
used. Multifractal calculus allows us to extract the maximum information. 

In 1974, Mandelbrot introduced the concept of a multifractal when he was working in the 
context of the turbulence. Fractals were already well known and understood objects, and 
accep,ted to be widely present in nature. Since then, multifractal calculus has been 
rigorously developed and successfully applied to many different fields. The basis for the 
systematic calculus of multifractal function is Halsey et al. [9]. Multifractal properties have 
been described for different systems: river models [lo], networks [ll], strange attractors 
[12] and binomial measures [9], among others. 

In order to perform a multifractal calculus, a measure needs to be defined over the 
d-dimensional system 9, where a measure ,u(x) is assumed to exist. The total size of the set 
must be normalized to one, and then, it should be partitioned into { Bi} i = 1, . . ., n pieces 
of length I,. A probability measure pi is assigned to every piece, i.e., 

pi = d/-4x). I B. (1) 
If Q is a multifractal object, then it can be described as S2 = U,Q~, where {Q2,} are 

subsets with scaling pi - 1”. Following Ref. [9], a partition function is defined, 

r(q, D(q), IBi}, Ii) = C- = 
““P? 1 

’ i=l l:(q) 
qg% 

where 

t(4) = D(q) (4 - 1) 

with the only requirement being the normalization of the measure 

4 

(2) 

(3) 

(4) gi = l. 
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Equation (2) gives an implicit definition of D(q). In the particular case of 1, = I, V’B,, 
D(q) can be explicitly written, and one gets 

Lnx(4) D(q) = ‘I’? --L ~ 
-1 

) 
q-1 Lnl I 

(5) 

where x(q) = Cipf. D(q) are called correlation dimensions. The complete spectrum of 
fractal dimension for the set can be obtained through 

a(q) = ~lbrl)nk)l (6) 

f(a) = d+[q(+ll~(s(4) (7) 

where f(a) represents the fractal dimension of a set that has a diverging exponent (Y in the 
measure. 

The function z(q) behaves as a straight line in the limit q + *a~, and its asymptotes give 
the values of the end points of the f(a) spectrum. It can be seen that z(q) satisfies the 
following limit conditions: 

lim z(q) = Aq - e q+-= 
lim t(q) = Xq - Z q-m 

with A. = a(+~), A= a(-m), e = f(cr(+m)) and 2 = f(a(-w)) [13]. 

2.2. The muitifractal rainforest 

The real system that we studied is a tropical rainforest located in Barro Colorado Island, 
isolated and preserved after the construction of the Panama canal. In Fig. l(A) a map of 
50 hectares (1 ha = lo4 m’) of BCI is represented. It is a quite flat and wild terrain in the 
central part of the island [14]. This apparently simple map was possible after two years of 
field studies in the island, and was drawn using measures from the ground. There 2582 low 
canopy survey points are shown as black dots. They indicate that the height of the canopy 
was s 10 m in 1982, 1983 or in both years. These low canopy points represent the recent 
formation of a clearing, due to treefall. It is known that clearings are responsible for the 
great diversity found in tropical rainforests: different species have different needs of light, 
space and nutrients, and hence the existence of clearings of many sizes allows the 
coexistence of many species. On the other hand, there is a dynamical counterpart to the 
spatial distribution of trees: the continuous generation of clearings allows new individuals 
to develop, and the evolution and competition among individuals in the rainforest 
continues [15]. 

To estimate the fractal dimension of the forest the picture was transformed into a binary 
matrix. A value 1 was assigned to black sites, and 0 to white ones. A computer program 
counted the occupied boxes having sizes between 1 X 2 (or 2 x 1) and 10 x 10, in plot 
units. The system was covered by rectangular and square boxes, in the vertical and in the 
horizontal direction, and all integer box sizes were used. The whole plot has size 100 x 200 
in these units, and each pixel represents a surface of 5 x 5 m2 in the real forest. Figure 
2(A) shows the results. The existence of a fractal dimension for the set is apparent with a 
continuous drift of the fractal dimension below a distance di = 30 m in the real forest. This 
continuous decrease in Do has been already noticed by some authors. A concave log-log 
graph has been often found, mainly related to biological systems (lungs, leaves and 
contours of cells, among others) when observed in a deeper scale (compared to the length 
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B 

D, = 1.46f 0.05 
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Ln (6) 

Fig. 2. (A) Box-counting carried out over the set of Fig. l(A). Notice the continuous drift in Da. pointing out the 
underlying multifractal structure; (B) box-counting for the maximum probability in the same set, in order to obtain 

the value of D(m). 

scale at which any structure would disappear). Real systems with fractal properties show a 
progressive change of Do, rather than a cut-off until which the system fits a straight line (in 
a log-log plot). This existence of several successive structures, reflected in the gentle 
change in D,, constitutes evidence for multifractal scaling [16]. 

We estimated the fractal dimension for d between 30 and 60 m in the real forest. This is 
clearly the part of the raph where the linearity is evident. The fractal dimension of the 

Qc forest in this range is Do = 1.86 + 0.03. Over a characteristic length of d2 = 60 m for the 
boxes, one cannot find any empty box. The non-trivial self-similarity is lost and the fractal 
dimension becomes 2+. 

‘Although this distance is perhaps too short to talk about a fractal distribution of clearings (that would be 
rigorously obtained only at a percolation point) it will be shown that the distribution of sizes (areas) of clearings vs 
relative frequency of every size fits a power-law. This is only a first evidence. What really tells us that the 
rainforest is evolving close to a critical point is the self-similarity of the biomass distribution. 
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It is known that the asymptotes of D(q) can be easily obtained if one knows the values 
of the extreme probabilities of the boxes of the set: 

D- = Ln(Pmin) 
cm 

Ln(4 
(11) 

for every scale 6. It is clear that D, and D-, should be calculated by performing a linear 
regression, as is usually done for D,,. The second calculation we carried out was D,, the 
correlation dimension for q + 03, and we used the same range of distances as in the 
previous one: see Fig. 2(B). The interpolation was made usin@l the points, and the result 
was D”,’ = 1.46 + 0.05. The obvious difference between DO and D”,“, as well as the 
observed continuous drift in Dr, are strong arguments supporting multifractality. In our 
case, it was impossible to do the same with D-,, due to the size of the real system. In the 
available domain of lengths, Pmin keeps almost constant, so D-, = 0. But, as 
D-, > DO > D,, it cannot be accepted as a measure of D-,. Therefore, the calculation 
will try to adjust the left side of D(q) as well as possible, and some discrepancies could 
arise in the right side. There can be found different optimizing methods to choose the scale 
at which one should define the measure to perform the multifractal calculations [17]. We 
believe that, in this case, the adjustment of Do and D, is enough to choose 6 in a right 
way. 

The measure defined on our set is a mass measure. Every black pixel is assigned a 
probability pd = l/N,, where NP = 2582 is the total number of black dots in the forest. The 
box size that best fits the calculated DO and D, is a 4 x 4 box, again using the pixels as 
elementary distance units. 

We are dealing with a set of points distributed over a lattice. Once the size of the box is 
chosen, it is particularly easy to calculate z(q), D(q) and f( ) a according to expressions (3), 
(5)-(7). Let us define Nj as the total number of boxes containing j low canopy points. The 
selection of 4 x 4 boxes implies that j takes a small number of discrete values, from 0 to 
16. Now we can write x(q) as 

X(q) = C~j ~ ‘. 

j 
(  1 P 

(12) 

The sum over boxes (-103) transforms into a sum over occupation numbers (-10’). The 
multifractal functions obtained for BCI can be seen in Fig. 3. First of all, the t(q) spectrum 
(Fig. 3(A)) is depicted. Its asymptotes give the end points of the spectrum of multifractal 
dimensions (according to (8) and (9)) and its values are represented in Fig. 3(C), together 
with the slope-one tangent to f(a). f(a( ~0)) and f( a( - co)) give a non-zero value. This is 
due to the non-zero measure of the set supporting the extreme probabilities in the 
distribution function that is found. This distribution is very close to an exponential one, but 
there is an obvious cut-off at the size 16 (the maximum occupation number). 

2.3. Critical properties 

The fractal patterns that have been found in BCI may be a fingerprint of a system in a 
critical state. The image is quantified by a power-law function. Fluctuations in the variables 
of the system change in such a way that they present a wide spectrum of sizes, from very 
small to the maximum allowed size, and they follow a power-law. The appearance of 
universality in systems close to a critical point is another essential property. Some 
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0.00 ,:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,, 
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a 

Fig. 3. Multifractal functions for BCI and a simulation for some given parameters (see main text). (A) r(q). The 
asymptotes of this function were evaluated to be lim,,, z(q) = 1.44q - 0.59 and lim,,-, t(q) = 2.2Oq - 1.55; (B) 
spectrum of correlation dimensions for a real and a simulated forest; (C) f(o) spectrum for BCI and a simulation, 

using the same parameters as those in (B). 
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quantities can be defined (the critical exponents) and their values are common to different 
classes of systems that follow a few very general assumptions. In this section, we present 
additional results that help to corroborate the conjecture that BCI is actually a large living 
multifractal with critical dynamics. 

When observing a tropical rainforest, we are faced with a highly nonlinear dissipative 
system. The dynamical evolution of such a system is mainly led by the continuous creation 
of clearings. They leave places for new trees to be grown, and the size of the open canopy 
is a key element in the selection of which species becomes established there. This is why a 
study of the distribution should prove useful in order to understand the underlying 
dynamical laws. 

Hence, first of all, we calculated the frequency distribution of gap sizes in the BCI map. 
There is a well defined power-law, as can be seen in Fig. 4(A): 

N(G) CC G-’ 

- t BCI = 2.01 * 0.24 
0 cl 

0.001 1 
1 10 

G 

i lb 
G 

(13) 

Fig. 4. (A) Power-law scaling of cluster gap sizes in BCI. Two points are considered to belong to the same cluster 
if they are side-by-side. Points connecting through the corners belong to different clusters. Other elections of 
neighbourhood do not affect the power-law distribution; (B) the same measure made over the model, with 
P,, = 0.013 and y = 2.5. Ten independent runs of 200 x 200 lattices have been averaged, after 200 transients were 

discarded. 
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with Lj = 2.01 + 0.24. The biggest gaps are omitted from the figure (G = 37, 39, 52 and 90, 
one of each). It is our belief that this has a different generating mechanism than the simple 
falling of trees, say external disturbances. The role of these large clearings is discussed 
later. The maximum cluster size fitting the power-law is S, = 27.4m i= dr. The correlation 
function was also calculated for BCI data, and this is shown in Fig. 5(A). It is calculated as 
the average in the number of neighbours (NJ at a distance d (d = /r - r’]) with r and r’ 
the positions of a point and its neighbours, respectively, from a given black site. The sum is 
performed over all the black pixels that lie at a distance db from the boundaries such that 
dh 2 d [18]. The total number of pixels verifying this is N,(d). The normalizing factor N is 
N,(d) times the maximum number of neighbours (NY) at that distance: 

(14) 

p(r) = 1 for a black site, and 0 for a white one. 
The correlation function reveals three well-defined parts. The first one runs from the 

0.5 

t 

\ 
\ 

\ v,=O.68 f  0.02 
\ 

> \ 
*\ 

\ 
BARR0 Sk u,=O.Zl f  0.04 

COLORADO - A$ 
ISLAND 

O.l! I1111 
10 

d d1 

v,=o. 19 * 0.05 

FOREST 
GAME 

Fig. 5. (A) Spatial correlation function for BCI; and (B) for the simulated forest, where five runs of 200 x 200 
lattices have been averaged. In the simulation, y = 2.5 and Pd = 0.013. 
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closest neighbours (at a distance of 5 m in the real forest) to di = 30 m. It scales as a 
power-law, C(d) = d-“, with (Y = 0.68 + 0.02. The fractal dimension of a set is related to 
the exponent of the correlation function by d = Do + Y, where d is the spatial dimension 
and C(d) = d-“. In the first are described, Do = 1.32 f 0.02, according to the last 
expression, with d = 2 and Y = a, and this value is quite close to the averaged slope from 
the box-counting, 0:” = 1.17 + 0.05. 

The second part corresponds to 30 < d < 60 m, and it gives another well-defined 
power-law, C(d) cc d-p, B = 0.21 k 0.04. Now D,, = 1.79 + 0.04, in quite good agreement 
with the calculated value 0;” = 1.86 + 0.03. Out of these two areas for d > 60 m, the 
fractal dimension of the forest becomes 2, as has been discussed, and C(d) shows another 
sharp change. It is no longer a power-law function but keeps almost constant. Hence, there 
are two characteristic lengths, dI = 30 m, d, = 60 m, that point out the existence of 
phenomena taking place at different scales and with different results. In particular, d2 can 
be thought of as the typical distance of connected biomass, without breaks produced by 
clearings. A careful observation of the spatial correlation function reveals a gentle increase 
in the value of C(d). For d > dZ, there are no more changes. This distance is an upper 
limit value in the fractal behaviour of clearing size [19]. The change in the exponent of 
C(d) also supports multifractality. The possible implications will be discussed in the last 
section. 

The previous results have been obtained from a snapshot of a real rainforest. They 
provide evidence that BCI is a living system in or close to a critical state. In order to 
obtain further evidence of this conjecture, theoretical models can be extremely useful. 
Here a CA model will be used. This model can show us how these structures are formed 
and can also give us temporal dynamics, not available (at all) from field studies on forest 
dynamics. Given the enormous difficulty of getting such an amount of information 
(together with the years required to get it) the following model of rainforest dynamics was 
proposed in order to fill this lack. 

3. THE FOREST GAME 

3.1. Cellular automata model 

The forest game (FG) [8], is a stochastic cellular automaton (CA) running on a 
two-dimensional L X L square lattice, 

A(L) = {(i, j)ll d i, j d L} (15) 

with periodic boundary conditions. A CA is placed in every site. It can grow from a 
minimum size S, to a maximum height S,. The rate of growth depends on the strength of 
the interaction with its neighbours. The dynamics of the model is based on the competition 
for resources among the trees. The internal state of every automaton (the height of every 
tree) is determined through a function S(i, j), where i, j E 1, 2, . . ., L represent its 
position in the lattice. 

Four basic rules defined the automata. 

(A) Growth. A given tree grows if the screening from its eight nearest neighbours is 
weak enough. The tree size is updated at every time step IZ according to the next rule: 

&+~(i, i) = Ui, i) + A,,(4 il. (16) 

A,(i, j) includes the way in which nearest trees interact. We take a simple screening of the 
neighbours, and An(i, j) is defined as 
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A,(i, j) = /LO 1 - $(c,&(r, s) . 
i-, s 1 (17) 

O(z) = z if z > 0, and O(z) = 0 if z < 0: if the screening is too high, growth is not allowed. 
( r, s> indicates the restriction to the eight nearest trees, and, obviously, (r , s) # (i, j). 
We take ,U = 1 in all the simulations. y represents the interaction strength, and it will be 
revealed as an important parameter in the dynamics of the model. If y = 0 no interaction 
takes place (trees grow independently), and for y --+ ~0, growth becomes impossible. 

A,, tries to introduce every kind of competition among trees: the race for light, for 
nutrients, for soil and the possible interaction with other plants or animals that might take 
a role in growth. A,, is quite a simple function, but if the rainforest, as a dynamical system, 
operates near a critical point, it is known that the scale invariance implies independence 
from the fine details of the model, and A,, has to be enough to catch the essential features 
of all interaction factors. 

(B) Death. A tree will fall down when the maximum height S, is reached. It can also die 
at any time according to some probability Pd that is kept fixed. Immediately after its death. 
the height of the tree is set to zero. Real data available from some rainforests support the 
ansatz that Pd roughly takes a constant value for any life-time of the tree. The probability 
of death has likewise been evaluated between 1 and 2% per year [20]. 

(C) Clearing formation. When a tree dies, a clearing in the canopy is formed. Not only 
is the dead tree removed, but also the nearest neighbours in a radius R according to the 
next rule: 

where ((r - i)’ + (s - j)* d i* + j*). The mass of neighbours removed is proportional to 
the size of the falling tree, and at most equal to it. R is determined through the previous 
inequality. When the chosen tree falls down, only the biomass removed by this first tree is 
considered, and not the biomass that the neighbours that are eliminated by the first falling 
tree could also remove. This is a very reasonable rule that prevents the appearance of 
unbiological avalanches of the size of the system. This rule also moves the system away 
from an exact SOC state and brings about the appearance of a cut-off in some of the 
computed functions, as will be seen.’ 

(D) Germination. A new tree can appear at any empty lattice site with some probability 
Pb. The size of the new tree is the minimum one, So. We take So = 0.1 in all our 
simulations. 

The lattice is updated in an asynchronous fashion. At each time step L x L lattice sites 
are randomly chosen and, depending on the state of the automata, one of the previous 
rules is applied. The updating of the lattice was chosen in such a way that a time step is 
approximately equivalent to a year of evolution in a real rainforest. 

As can be seen, only the main properties of what might be a real forest are included as 
the rules of the CA, and neither fine details about tree structure nor about interactions are 
considered, provided the system has a close-to-critical-state organization. 

‘Biological constraints must be taken into account. Neither arbitrarily large trees nor gaps can be formed in the 
real forest. Such types of constraints lead to a restricted capability of the system to reach critical states. 
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3.2. Results 

In all the simulations performed, the probability of germination was kept fixed to a value 
Pb = 0.5, and the interaction strength y and the probability of death Pd were chosen as 
parameters of the model. Even so, if one wishes to reproduce real non-perturbed 
rainforests, Pd has to be kept between 0.01 and 0.02, as stated in the last subsection. y 
would really be the single free parameter of the model. It is not possible to make an 
estimation of it using data coming from real systems. In Fig. 6, the parameter space of the 
model is represented. Different choices of Pb simply shift the position of the domains that 
are to be described, but do not alter the different behaviours that the model displays. 
Three well-defined different areas were found. 

3.2.1. Damped oscillations (DO). A small part of the parameter space presents damped 
oscillations in the biomass. Due to the small interaction and also to the small probability of 
death, trees start to grow simultaneously and at the same rate. They mostly die when the 
maximum size S, = 30 is reached, and the birth and growth start again. Eventually, the 
system becomes uncoupled due to the small but non-zero probability of death and also 
because they do not appear exactly at the same time (the oscillation in the biomass is 
damped). The Fourier transform of biomass fluctuations has been also calculated. We used 
an average of eight runs of 21° time steps and no transients were discarded, to make 
evident the periodic behaviour of the biomass. In this case it obviously presents a peak, 
produced by this oscillation, and no further structure is observed. 

The distribution of tree sizes, F(h) has also been measured. In all the calculated F(h), 
200 transients were discarded and 10 independent runs of 200 X 200 lattices were averaged. 
In the area of damped oscillations, the size of the trees at the nth time step can be 
obtained in analytic form. Consider equation (17), and let S be the average size of trees. 
For a small enough y (as is the case in this domain), the growth at every time step 
becomes 

A=l-yS (19) 

where YS < 1 is assumed. Then, the size of a tree at the nth time step is 

s, = 1 + (1 - yS) + (1 - yS)2 + (1 - yS)3 + . . * + (1 - yS)“-’ + (1 - yS)“S,. (20) 

0.01 0.1 

Pd 

Fig. 6. Parameter space of the forest game. The marked domains are described in the main text. 
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‘The last expression can be added up, and we finally get 

s, = J- + so - 1. (1 - yS)“. 
YS ( 1 Yf 

(21) 

If yS << 1, then A = 1, and only integer sizes (plus S,) are allowed. If yS is small but not 
negligible, the distribution of trees presents peaks at approximately integer sizes, ‘modu- 
lated’ by the delay produced by yS. Tree distributions can be seen in Fig. 7. When one gets 
closer to the boundaries of this area, the damping is increased, yS = 1, and the described 
structure fades away. 

.3.2.2. Random forest (RF). The right most part of the parameters space is termed 
random forest because of the almost independent way in which trees grow in this area. 
Now, it is not a result of an almost null interaction strength but is due to the absence of 
neighbours, since the probability of death is very high. It starts to grow, but it will soon 
die. In this area, the fractal dimension becomes 2, pointing out the almost random 
germination and death of trees. Some spatial structure is still observed when keeping close 
to the left boundary. This is reflected in the spreading of the multifractal functions, even 
with D,, = 2. This partial spreading is lost when moving towards Pd = 1, and the whole 
multifractal spectrum collapses to a single value (D(q) = 2, Vq, and f(a) becomes a single 
point). The distribution of trees obtained, F(h), decays fast and big trees are seldom found 
(see Fig. 7(B)). 

3.2.3. Complex forest (CF). The most interesting area of the parameter space is the 
central part termed complex forest. In this area, the Fourier transform (P(f)) of the 
biomass fluctuations, i.e., of B(Q, t) = xn($,(i, j) gives a spectrum f-@, with @ > 0.85. 
Figure 8 displays some of the obtained spectra in this phase. They were obtained with 21° 
time steps after 200 transients were discarded, and an average was made over eight N x N 
lattices. This measure has been used to study possible finite-size effects. P(f) was 
calculated for three different lattice sizes, and no important deviation in the power-law is 
found. Only for the smallest size (N = 10) a slight deviation in the higher frequencies is 
observed. Also the multifractal functions give a reasonable spreading of values (wider than 
nn any other domain of parameter space) and D, is always non-integer. Some multifractal 
functions can be seen in Fig. 9. The spatial correlation function behaves as a power-law 
(Fig. 5(B)) d an scaling laws for gap cluster sizes and for tree sizes are also found. 

3.2.4. The white area (WA). This represents a transition among the three described 
domains. Partially fractal structures and weak correlations are found, as well as power-laws 
in biomass fluctuations that deviate more and more from l/f noise. The distribution of 
trees changes from a clear power-law to an exponential distribution, while keeping close to 
CF. It starts to oscillate when approaching DO and decays fast when moving towards RF. 

From the previous results, it can be seen that our CA model, the forest game, can 
display many different states of dynamical equilibrium. There is a domain in parameter 
space that generates self-organized criticality. But what about the real data? The already 
observed properties of the model seem to indicate that, at least qualitatively, BCI is well 
reproduced. And the place where real physical measures best fit belongs to the most 
‘complex’ patterns that the model is able to generate. In particular, there is a combination 
of parameters, Ps = 0.013 and y* = 2.5 that recovers almost exactly all the functions and 
values measured in BCI. Figure l(B) reproduces a snapshot of a 100 x 200 lattice for these 
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Fig. 7. Tree distribution given by the forest game. Many different functions can be found, depending on the 
chosen parameters. (A) Pd = 0.001, y  = 0.01, in the damped oscillations domain; (B) Pd = 0.6 and y  = 0.1, in the 
random forest area; (C) Pd = 0.02, y  = 9. Even a slight deviation from the complex forest domain produces an 
exponential-like distribution; (D) Pd = 0.013 and y  = 2.5. The power-law distribution is well-fitted, except in the 
smaller sizes, due to the existence of a minimum tree height; (E) space renormalization of tree size distribution for 
the parameters of (D). Two different block sizes have been used. Both fit quite well to the original distribution 

(continuous line). 
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30 

Fig. 8. Fourier transform of biomass fluctuations. Three different lattice sizes have been used (with the same 
parameter set) in order to evaluate possible finite-size effects. (A) N = 10; (B) N = 30; (C) N = 50. 

parameters. In Fig. 3(B), (c) D(q) and f(a) for BCI are plotted together with the ones 
obtained for the given parameters. In Fig. 5(B), the spatial correlation function is 
represented. It also shows the change in the slope at the same point that was found for 
BCI, and the exponents are the same within the error. Not only are the known values 
reproduced, but the model also allows the prediction of other results of real rainforests 
presenting such spatial patterns: P; and y* give a Fourier transform of biomass fluctu- 
ations with $J = 1.02 f 0.03, which is the closest to l/f noise in our parameter space. Also 
a power-law scaling of tree sizes and of gap sizes has been obtained (Figs 7(D) and 4(B) 
respectively.) The distribution of tree sizes is not available for BCI, but some other tropical 
rainforests are known to have this property [20]. The biomass displays in the model a 
self-similar spatial distribution. In Fig. 7(E) the distribution of tree sizes is plotted together 
with new distributions at different scales. A standard space renormalization has been used. 
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1.1 1.3 1.5 1.7 1.9 2.1 2 

a 

Fig. 9. Multifractal functions obtained for different sets of parameters. DO-damped oscillations; RF-random 
forest; WA-white area. The maximum spreading of these functions is found in the complex forest domain and 
close to it. It is a measure of the diversity generated by the system. The wider the spectra, the higher the amount 

of sizes available in the system. 

The size of adjacent trees in a square L x L has been averaged to form the new block 
variable, and the resulting distribution has been properly resealed: 

(22) 

(23) 

where k, 1 = 1, 2, . . . N/L represent sites of the resealed lattice and F(S(I’, i)) and 
F(S(k, I)) are the original distribution and the new one, respectively. The comparison 
between the distributions points out the fractal distribution of biomass. An exact character- 
ization of the critical transition that takes place would involve the determination of critical 
exponents. The resealing performed over the distribution function sheds some light on the 
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question about what values those exponents would take. This subject will be further 
explored in future work. 

4. SUMMARY AND DISCUSSION 

In this paper we have analysed a tropical rainforest from the point of view of critical 
transitions in physics. Strong evidence of SOC have been found in the power-laws that the 
magnitudes of the system follow, both in space (multifractality, correlation function, 
clearings and tree sizes distributions) and time (biomass fluctuations). Since observational 
data are insufficient, we have presented and analysed a new model of forest dynamics. If 
the real rainforest really evolves close to a critical point, its physics should be independent 
of the fine details. This is the clue to make models useful. The results obtained are 
valuable in themselves but, in addition, the model has been shown to reproduce almost 
exactly some key characteristics of a real tropical rainforest. It is our belief that BCI is a 
system evolving at the edge of chaos. A rainforest is not a very ordered system, it does not 
behave periodically in space, nor in time. On the other hand, it is not a completely 
disordered system, with random spatial and temporal patterns. It just seems to poise itself 
to a self-organized critical state, where self-similarity is the rule, not the exception. This 
might be the configuration where the system is more robust against perturbations: any 
influence is already considered in the actual state of the system, and it would easily adapt 
to the real configuration. There is a fact that leads us to think in such a way. There were a 
few very large clearings in BCI that the model does not reproduce. They are very likely 
due to external disturbances (the plot of BCI of Fig. l(A) was done after an El Nifio 
episode). But when the spatial correlation function was carried out, a linear fitting of the 
results for small distances was obtained. The closest neighbour correlations have a very 
important contribution coming from these biggest clearings. Hence, although they do not 
adjust exactly to the size scaling function N(G), they follow a power-law in the correlation 
function, while the results from the model display a small concavity in C(d) for the 
smallest distances. External added disturbances in the system will be a future field of 
research, and perhaps the forest game will prove useful in the determination of how human 
influences should be introduced [21]. 

Not only the multifractal spectra, clearing distribution and spatial correlation function of 
UC1 have been recovered, but some predictions about biomass fluctuations and tree 
distribution have been made. These predictions are coherent with what one would expect 
from a critical system. The observed properties of rainforests can therefore emerge from 
very simple interaction rules. It would be very interesting to know if rainforests move to 
the critical point when left to free evolution in any configuration, and are only led by the 
given rules [21]. 
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