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Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks
of genotypes. These networks, formed by all genotypes that yield the same phenotype,
have a complex architecture that conditions the molecular composition of populations
and their movements on genome spaces. Here we consider as an example the case of pop-
ulations evolving on RNA secondary structure neutral networks and study the community
structure of the network revealed through dynamical properties of the population at equi-
librium and during adaptive transients. We unveil a rich hierarchical community structure
that, eventually, can be traced back to the non-trivial relationship between RNA secondary
structure and sequence composition. We demonstrate that usual measures of modularity
that only take into account the static, topological structure of networks, cannot identify
the community structure disclosed by population dynamics.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The biological evolution of populations is conditioned by
the availability and attainability of genomic solutions lead-
ing to viable organisms. All biological beings are first
defined by their genotypes, a sequence of variable length
encoding the information of a developing program that
eventually ushers in functional organisms. At the highest
level, these organisms are characterized by their pheno-
types, that is the set of measurable features that determine
their biological functions — and their viability, when pheno-
type is evaluated in a particular environment —, and on
which natural selection acts. Any individual is subjected
to replication errors due to a non-zero mutation rate: Vari-
ability is thus an intrinsic property that produces heteroge-
neous populations and becomes essential for adaptation
and for the discovery of evolutionary innovations.

Not all mutations are of equal value [1]. Some are ben-
eficial, others are neutral, and many are deleterious for an
organism when compared to its progenitors. In popula-
tions well adapted to constant environments, most muta-
tions are deleterious. Still, a certain decrease in fitness is
tolerated (typically depending on the population size)
and this permits the appearance of compensatory muta-
tions that guarantee survivability. When populations are
not optimized (a frequent situation when environments
change, for example), the fraction of beneficial mutations
increases [2]. Finally, it is known that many mutations
are neutral, such that they can accumulate in genomes
and natural selection does not act on these variants. The
idea of neutral evolution was first introduced by Kimura
[3] in order to account for the known fact that a large
number of mutations observed in proteins, DNA, or RNA,
did not have any effect on fitness. Soon after, the relevance
of neutral evolution to navigate at zero cost the space of
genotypes was put forward [4].

To date, all available data and models analysed indicate
that there is an enormous redundancy between genotype
and phenotype. That is, many different genotypes produce
the same phenotype, revealing the existence of a huge
number of neutral mutations [5]. In addition, the space of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2014.11.019&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2014.11.019
http://dx.doi.org/10.1016/j.chaos.2014.11.019
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


100 J.A. Capitán et al. / Chaos, Solitons & Fractals 72 (2015) 99–106
genotypes has a very high dimensionality, a condition that
favors the existence of contiguous neutral genotypes. A
sequence of length l whose components are taken from
an alphabet of four letters (as it happens for DNA and
RNA), has 3l different genotypes as neighbors that differ
from it in only one nucleotide. If any of these neighbors
yields the same phenotype, the two sequences can be con-
nected through a point mutation. This permits that the
genomic composition of a population be changed from
one position (in the space of genomes) to that adjacent
one without paying any cost in fitness. Actually, the likeli-
hood that this local move can be repeated and leads to very
long excursions in the space of genotypes increases with
the sequence length. The previous facts have led to the
concept of neutral networks of genotypes, representing con-
nected ensembles of genotypes following the criterion of
accessibility through point mutations. Genotype networks
have important implications in the evolutionary process
[6,12].

RNA sequences folding into their minimum free energy
secondary structures (see Fig. 1) are a widely used model
to represent the genotype-phenotype relationship [7–9].
RNA nucleotides A (adenine), U (uracil), G (guanine), and
C (cytosine) form pairs that decrease the free energy of
the open chain. The most energetic pair is G-C, followed
by A-U and finally by G-U. Their energetic contribution is
approximately �3 kcal/mol, �2 kcal/mol and �1 kcal/mol,
respectively. The two first pairs are analogous to Wat-
son–Crick pairs G-C and A-T in DNA, and the latter is spe-
cific of RNA. Analytical studies of the number of sequences
of length l compatible with a fixed secondary structure
(used as a proxy for the phenotype) have revealed that
the average size of the corresponding neutral network
grows as l3=2bl, where b is a constant [10]. For example,
there should be about 1028 sequences compatible with
the structure of a transfer RNA (which has length l ¼ 76),
while the currently known smallest functional RNAs, of
length l � 14 [11], could in principle be obtained from
more than 106 different sequences. As anticipated, neutral
networks are astronomically large even for moderate
A

B

Fig. 1. RNA secondary structure neutral networks. (A) A few examples of the hug
configuration (B). In order to preserve the structure, there are positions in the seq
by light green boxes), while others are almost free to change (unpaired nucleot
some subsets of sequences, and might correspond to paired or unpaired nucleotid
the form of points (unpaired nucleotides) and parentheses (pairs of nucleotides):
genotype network. Nodes correspond to genotypes (RNA sequences in this exam
same secondary structure. There are public servers where several properties of
RNAfold.cgi. (For interpretation of the references to color in this figure legend, t
values of the sequence length. Together with the high
dimensionality of the space of phenotypes, that causes
most (common) genotype networks to percolate the space
of genotypes.

In this contribution, we analyse the dynamics of popu-
lations on realistic genotype networks using RNA second-
ary structure neutral networks as example. First, we need
to rephrase some previous results regarding dynamics on
heterogeneous networks [12] in the current molecular
context, paying special attention to the consequences of
heterogeneity for the diversity and composition of popula-
tions. We present new results regarding the community
structure of genotype networks under realistic population
dynamics, and introduce dynamical measures of modular-
ity that reveal a complex interrelationship between
(dynamical) community size, sequence representation in
evolving populations, and RNA sequence composition.

2. Dynamics on genotype networks

A genotype network includes in principle all RNA
sequences that fold into the same secondary structure. This
ensemble does not necessarily form a single connected
network. In what follows, we always reduce the dynamics
of the populations to connected components of the pheno-
type. The topology of such a (connected) genotype network
is specified through its corresponding adjacency matrix C.
The elements Cij take value 1 if genotypes i and j differ in
a single letter of their sequences and value 0 if they differ
in two or more letters. Sequences in a population replicate
(see below) and daughter sequences have a probability to
mutate one position in their sequences with a probability
l that is a parameter of the model. These dynamics have
been studied in previous works [12–15], where the reader
can find additional details.

2.1. Definitions and dynamical equations

Each genotype i in the network is represented by niðtÞ
sequences at time t; i ¼ 1; . . . ;m, with m the number of
C

e number of RNA sequences that fold into the same minimum free energy
uence that must be conserved (in this case the pairs G-C and C-G signaled
ides in the light orange box). Other positions might be conserved only in
es (white boxes). An alternative representation for the structure in (B) is in
(((..((((. . ..)))). . .((((. . .)))).))) (C) Schematic representation of a

ple) and links join sequences that differ in only one letter and fold into the
RNA folding can be easily explored, as http://rna.tbi.univie.ac.at/cgi-bin/
he reader is referred to the web version of this article.)
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different genotypes (or nodes) in the network. A fixed pop-
ulation size is used, N ¼

P
iniðtÞ, and we work in the limit

of infinitely large populations, N !1, so that finite size
effects are discarded and, in practice, we consider the frac-
tion of population at each node. The initial distribution of
sequences on the network at t ¼ 0 is ~nð0Þ. In particular,
we will be interested in homogeneous initial populations,
that is, in populations which, at time t ¼ 0 are formed by
N identical genotypes. The degree ki of each genotype i
specifies how many neutral neighbors it has.

At each time step, all sequences replicate synchro-
nously. Daughter sequences mutate to one of the 3l nearest
neighbors with probability l, and remain equal to their
mother sequence with probability 1� l. In our representa-
tion 0 < l 6 1. The singular case l ¼ 0 is excluded to avoid
trivial dynamics and guarantee evolution towards a unique
equilibrium state. With probability ki=ð3lÞ, the mutated
sequence exists in the neutral network and it adds to the
population of the corresponding neighboring genotype.
Otherwise, it falls off the network and disappears. These
conditions implicitly represent a peak landscape in
phenotypes, that is a phenotype with value 1 and any other
possibility with value 0 [6].

The mean-field equations describing the dynamics of
the population on the network in matrix form are

~nðt þ 1Þ ¼ ð2� lÞI~nðtÞ þ l
3l

C~nðtÞ; ð1Þ

where I is the identity matrix. The transition matrix M is
defined as

M ¼ ð2� lÞIþ l
3l

C: ð2Þ

The set of m eigenvalues (all real) of M is fkig, and they
are ordered such that ki P kiþ1. The corresponding m
eigenvectors are f~uig, and since M is real and symmetric
they can be chosen such that ~ui �~uj ¼ 0; 8i – j and
j~uij ¼ 1; 8i. Matrix M is irreducible by definition (the
underlying network is connected) and has positive values
in the diagonal. It is therefore primitive, so the
Perron–Frobenius theorem guarantees that the largest
eigenvalue of M is positive, k1 > jkij; 8i > 1, and its
associated eigenvector is also positive (i.e., ð~u1Þi > 0; 8i)
in the interval of l values used [12].

The dynamics of the system, Eq. (1), can thus be written
as

~nðtÞ ¼Mt~nð0Þ ¼
Xm

i¼1

kt
iai~ui; ð3Þ

where we have defined ai as the projection of the initial
condition on the ith eigenvector of M,

ai ¼~nð0Þ �~ui: ð4Þ

Furthermore, as k1 > jkij; 8i > 1, there exists a unique
asymptotic state of the population that is independent of
the initial condition ~nð0Þ and is proportional to the
eigenvector that corresponds to the largest eigenvalue, ~u1:

lim
t!1

~nðtÞ
kt

1a1

 !
¼~u1; ð5Þ
while the largest eigenvalue k1 yields the growth rate of
the population at equilibrium (in the absence of rescaling).
For convenience, in the following, and without any loss of
generality, we normalize the population ~nðtÞ such that
j~nðtÞj ¼ 1 after each generation. With this normalization,
~nðtÞ !~u1 when t !1.

It is easy to demonstrate that the eigenvalues ki of the
transition matrix M are related to the eigenvalues ci of
the adjacency matrix C through ki ¼ ð2� lÞ þ l

3l ci. Further-
more, the eigenvectors of both matrices are identical [12].
This result implies that the asymptotic state of the popula-
tion only depends on the topology of the genotype
network.
2.2. Time to equilibrium

Eq. (3) describes the dynamics towards equilibrium
from an initial condition ~nð0Þ. The distance DðtÞ to the
equilibrium state can be written as

DðtÞ � Mt~nð0Þ
kt

1a1
�~u1

����
���� ¼ Xm

i¼2

~DiðtÞ
�����

����� ¼
Xm

i¼2

ai

a1

ki

k1

� �t

~ui

�����
�����: ð6Þ

In order to estimate how many generations elapse before
equilibrium is reached, we fix a threshold �, and define
the time to equilibrium t� as the number of generations
required for Dðt�Þ < �.

When a2 – 0; k2 – 0 and k2 – k3; t� can be approxi-
mated to first order by

t1
� ’

ln ja2=a1j � ln �
ln jk1=k2j

: ð7Þ

This approximation turns out to be extremely good in
most cases thanks to the exponentially fast suppression
of the contributions due to higher-order terms (since
ki P kiþ1; 8i). An evaluation of situations where approxi-
mation (7) fails can be found in [12]. However, all cases
shown in this work are well approximated by (7) within
an error of one generation with respect to the exact time
to equilibrium implicitly defined through expression (6).

An explicit relationship between the time to equilib-
rium and the mutation rate can be obtained by expanding
Eq. (7) in powers of l,

t1
� ¼ ln

a2

�a1

����
����

� �
a
l
þ b� cl

� �
þ Oðl2Þ; ð8Þ

where

a ¼ 6l
ðc1 � c2Þ

; b ¼ c1 þ c2 � 6l
2ðc1 � c2Þ

; c ¼ c1 � c2

72l
: ð9Þ

Since c� a, the dependence of the time to equilibrium
with the mutation rate follows t1

� / l�1 [12]. For a fixed
topology of the genotype network, the mutation rate l sets
the rate at which equilibrium is approached. An additional
factor, that we will explore in the following, is the effect of
the initial condition on t1

� , which is implicit in the projec-
tions a1 and a2, as previously defined.
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3. Community division in RNA secondary structure
neutral networks

In a previous study [16], all RNA sequences of length
l ¼ 12 where exhaustively folded in silico. The minimum
free energy secondary structure of each sequence was
predicted through the routine fold() from the Program
RNAfold included in the Vienna RNA package [17], version
1.5, with energy parameters based on [18]. Subsequently,
genotype networks for all possible secondary structures
of that length were calculated. That study was directed
towards describing the topological properties of RNA geno-
type networks, but did not address the analysis of how that
topology affects the dynamics of populations. In this work
we will analyse the hierarchical structure of a large
connected network with m ¼ 22;434 sequences corre-
sponding to the phenotype ..((. . ..))..2 with the aim of
characterizing the relationship between topology, sequence
composition, and population dynamics.
3.1. Equilibrium properties

In all the results that will be presented, we work in the
limit of infinite population size and thus obtain the
dynamical properties of the system by numerically solving
the corresponding equations. To evaluate equilibrium
properties, as discussed, it is enough to consider the adja-
cency matrix C. The first eigenvector of the transition
matrix M yields the population of each node at equilib-
rium, according to (5). Two important properties of geno-
types are their degree (ki, number of neutral neighbors)
and the fraction of population they accumulate at equilib-
rium, ð~u1Þi. We will refer to them as node degree and node
population throughout the paper. When these two quanti-
ties are represented as a function of each other, we observe
the appearance of three disjoint clusters of nodes, Fig. 2(A).
From now on, these clusters will be communities 1, 2, and
3 (C1, C2, and C3 for short), ranked in decreasing order
2 Since we are here using up-to-date energy parameters for RNA folding
and do not permit the existence of isolated pairs, the precise ensemble of
genotypes that maps onto each secondary structure differs from those
obtained in [16]. Statistical and topological properties remain invariant.
with respect to the maximally populated genotype (or
node). The separation in three communities is also
observed when we represent a histogram of the number
of nodes as a function of their population, Fig. 2(B). We
obtain a distribution with three well-defined regions of
abundance, in agreement with the clusters in Fig. 2(A).
Finally, a third indicator of the division in communities
appears in a rank-ordering representation of nodes accord-
ing to their population, Fig. 2(C). There are visible jumps in
this curve that coincide with changes of community.

3.2. Time to equilibrium

The previous analysis of equilibrium properties reveals
that, regarding dynamical properties, genotype networks
seem to organize in communities. In order to further inves-
tigate this possibility and the hierarchical organization of
the network, we continue our analysis with the study of
non-equilibrium properties, and their dependence on
quantities characterizing the nodes of the network. A first
question is whether the initial condition affects in a signif-
icant and meaningful way the time to equilibrium. From a
biological viewpoint, this quantity is of interest as well if
we consider how an evolving population might find and
fix a new phenotype. Previous phenotypes correspond to
the exterior of the network we are investigating, and the
new phenotype is associated to the current network. The
probability to enter the network through a particular node
depends on the number of outgoing links it has, that is its
outward degree 3l� ki. Also, the larger the network the
more likely that the phenotype it represents is localized.
Nodes that are more connected in the network have lower
probability of being the first node visited by an external
population. This fact has implications that have been dis-
cussed elsewhere [19]. In addition, it is also common that
populations enter a new phenotype through a single node,
affected by a sort of genomic bottleneck caused by the dif-
ficulty to find and fix new phenotypes, and also usually by
evolving at not-that-high mutation rates (specifically, in
the limit lN � 1) [20].

The time to equilibrium varies approximately twofold
depending on the initial distribution of the population.
We have compared t1

� , Eq. (7), in several different
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situations, in particular when all the initial population is
concentrated in a single node of communities 1, 2, or 3,
or when it spreads uniformly over the whole network.
Further, we have also considered whether C1, which is
the subset of the network accumulating most of the
sequence population (see Fig. 2), could be a good
representative of the dynamics we observe over the whole
network. To this end, we have simulated the evolution
towards equilibrium in a population spreading only on
C1 (with 7460 nodes) and compared with the previous
cases. All these results are summarized in Fig. 3(A). The
slowest dynamics corresponds to initial conditions starting
in C3, pointing out at its relative isolation within the net-
work, while an initial condition uniformly distribution
over the whole network leads to the fastest dynamics.
The comparison between the subnetwork C1 isolated from
the rest (sC1) and the whole network reveals that
dynamics is faster in the former, though both are quite
comparable. Differences arise from a variation in the two
largest eigenvalues, as shown in Fig. 3(B).

Next, we have represented the time to equilibrium t1
� as

a function of the degree ki of each node i, fixing the muta-
tion rate l ¼ 0:1 and repeating the calculation above for all
nodes in the whole network. The relation between these
two quantities offers little discriminatory power regarding
community structure, since only two major communities
can be resolved, see Fig. 3(C). On the contrary, a plot of
the time to equilibrium as a function of the population at
equilibrium (now relating two dynamical quantities)
reveals a rich structure in communities and hints at a pos-
sible hierarchical organization, Fig. 3(D). C2 is now clearly
separated into two independent communities (labeled C2A
and C2B) and further subdivisions of C3 and C2A can be
hypothesized.

Fig. 4 compares the overall properties of the four com-
munities C1, C2A, C2B, and C3 clearly detected in
Fig. 3(D). It is interesting that three of these quantities
appear correlated (the fraction of the total population in
each community, the average — per node — population,
and the average degree), while two others are weakly
dependent on each other (size of the community and the
average time to equilibrium) and apparently uncorrelated
to the former three.

3.3. Topological communities

Our results up to now indicate that populations evolv-
ing on genotype networks organize in communities that
are revealed through dynamical quantities, notably the
time to achieve equilibrium when a population enters
the network from a single node and the final population
that same node (or genotype) succeeds at attracting at
equilibrium. Now we wish to compare these dynamical
indicators of community structure with two other methods
to detect communities based solely on network topology
[21,22].

The modularity Q of a given network is quantified as the
fraction of edges that fall within the groups specified by a
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particular division in communities minus the expected
fraction should those edges be distributed at random.
Therefore, communities are defined as sets of nodes
sharing more links among them than with nodes outside
the community. Formally, modularity is defined as

Q ¼
Xc

v¼1

evv � a2
v

� �
; ð10Þ

where evv is the fraction of edges with both end vertices in
the same community v and ai is the fraction of ends of
edges that are attached to vertices in community v (with
origin in nodes outside v). The sum runs over the different
c communities in the partition tested. Optimal divisions
into communities are obtained by maximizing the value
of Q [23,24].

We have implemented two different methods to detect
topological communities in our genotype network. First,
we have used the stochastic block model inference method
in [25].3 It is based on a nested generative model that uses a
hierarchical characterization of the entire network at
different scales and allows to perform a correct statistical
inference and a proper detection of its modular structure.
This method permits to establish a priori the number of
communities in the network, so we have fixed it to 4 in order
to compare the result with the dynamical communities in
Fig. 5(A). The obtained modularity is Q ¼ 0:66, which is
not optimal (since we fix the number of communities) but
3 See also http://graph-tool.skewed.de/static/doc/community.html for an
algorithm that implements the method.

fixed, so modularity reaches a higher value, Q ¼ 0:74. (For interpretation
of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

http://graph-tool.skewed.de/static/doc/community.html
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takes a value higher than in the dynamical case (with
Q ¼ 0:46). However, the stochastic block model method
mixes nodes from all four communities, as shown by the dis-
tribution of different colors in Fig. 5(B). Second, we use a
Potts model approach [26] which optimizes Q and freely
selects the corresponding number of communities. In this
case we obtain a division in 12 communities and an optimal
modularity Q ¼ 0:74. As with the previous topological
method, we observe a high mixing of all 12 communities
in Fig. 5(C) in comparison to the dynamical result shown
in Fig. 5(A).

3.4. Dynamical communities and genotype composition

Methods to optimize topological communities yield
divisions that differ substantially from those obtained
through population dynamics. In order to disentangle the
reasons that concentrate populations in certain regions
(as C1) while others, though significantly large are compar-
atively depleted in population (as C3), we have investi-
gated the existence of compositional differences among
the four communities in Fig. 5(A). To this end, we need
here to reconsider the system that we began with, RNA
sequences, and analyse differences and similarities
between the composition, in terms of nucleotides, of
sequences in each community.

As we illustrated in Fig. 1, not all positions along the
RNA sequence admit mutations with the same probability.
In the phenotype of the network that we have analysed,
corresponding to the secondary structure ..((. . ..))..,
there are four positions that are invariant in all network
genotypes. These are those forming pairs, which occupy
positions 3, 4, 9, and 10, with nucleotides C, C, G, and G,
respectively. In order for the phenotype to be maintained,
there are some restrictions on the nucleotides occupying
positions 2 and 11: they have to be occupied by nucleo-
tides unable to pair; otherwise, a third pair would be stably
formed, leading to a different phenotype. This condition
Fig. 6. Genotype composition and community structure. Sequences in each of the
specified. Colors as in Fig. 5(A). Compositional differences and Hamming dist
agreement with the existence of additional divisions, first inferred from Fig. 3(D
(black between major communities, white between subcommunities) join comp
excludes six combinations (A-U, U-A, G-U, U-G, G-C, and
C-G) for positions 2 and 11. The remaining positions (1,
5, 6, 7, 8, and 12) can be occupied by any possible nucleo-
tide, since they do not participate in structural changes —
therefore the phenotype is maintained.

A compositional analysis of genotypes in the network
reveals that it is precisely the limitations in the possible
pairs at positions 2 and 11 that separates nodes into major
communities. Fig. 6 illustrates the relationship between
communities and sequence composition. Thanks to this
analysis we have realized that three of the communities
can be further divided into subcommunities attending to
their composition, and that non-trivial dynamical relation-
ships appear. We have calculated the Hamming distance,
defined as the number of differences in the composition
of two sequences, between all possible pairs in the net-
work. It turns out that some communities are two muta-
tional steps away, thus requiring an intermediate group
of genotypes for a population to move from one group to
another. The most remarkable example relates communi-
ties 2A and 2B, which can only be linked through nodes
at communities 1 or 3. Further, if going through C3 the
jump can only take place through sequences in community
3.3 going to 2A.2, since all other possibilities are again two
mutations away, and thus an intermediate (sub) commu-
nity is again required. Also, a similar decoupling occurs
among the subcommunities of 2A: 2A.2 is two mutations
away from 2A.1, but intermediate sequences reside in dif-
ferent communities. Therefore, if staying in 2A the only
possible path has at least three mutations: 2A.2!
2A.4! 2A.3! 2A.1.

The process of division in communities attending to
sequence composition could be in principle iterated to
unveil a complete hierarchical structure in genotype net-
works. However, not all divisions are equally meaningful.
For instance, the fact that most unpaired nucleotides inside
loops of sizes 3 and 4 can take any value without disturb-
ing the secondary structure makes divisions at this level
four dynamical communities belong to different compositional groups, as
ances indicate that a further community structure can be identified, in
) and here indicated as numbered circles inside major communities. Links
ositional groups that are at a Hamming distance of 1.
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uninteresting regarding population dynamics. From
what has been discussed in this section, compositional
restrictions in sequence positions that affect RNA second-
ary structure generates communities that are dynamically
detected by evolving populations: these communities are
de facto separated by valleys, or bottlenecks, in the space
of genomes, a situation that difficults the exchange of
population among groups.
4. Conclusions

We have presented an analysis of the structure of geno-
type networks based on the dynamical properties of popu-
lations of replicators conditioned to evolve on that
network. By means of an RNA secondary structure neutral
network, it has been shown that sequence populations are
able to detect a hierarchical community structure that
reflects compositional differences among communities
and the concomitant existence of restrictions to population
exchanges. The dynamical communities detected cannot
be recovered through existing measures of modularity,
which analyse the topological (thus static) structure of
networks.

The network we have chosen to illustrate the methodol-
ogy is not special in any way. Actually, other secondary
structures fulfilling stronger symmetry conditions proba-
bly lead to even clearer community patterns, as might be
inferred from previous studies which have also shown
clustering similar to that in Fig. 2(A) in other RNA networks
[16]. The phenomenology here described is thus generic.
Actually, longer sequences leading to larger networks will
probably have a richer hierarchical structure, since, as we
have seen, structural elements of RNA folded configura-
tions play an essential role in separating communities.

We believe that the detection of communities through
dynamical methods can be not only extended to other
genotype networks, but very likely to any other system
whose dynamics is constrained by the topology of a com-
plex network. A variety of network community detection
methods based on meaningful underlying dynamical pro-
cesses have been proposed in different contexts [27–29],
and all of them share the feature that detected communi-
ties can be very different from those based solely on net-
work connectivity. The identification of relevant
dynamical indicators of community structure (as were
here time to equilibrium or population of nodes) may be
system-dependent, and thus remains at present as an open
problem worth pursuing.
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