PHASE TRANSITIONS AND ORDER PARAMETERS

ow to define complexity is not a trivial question. Several

definitions have been proposed, and all of them share

the intuitive idea that complexity is neither complete
order nor complete disorder [1-5]. But this statement, though
fairly intuitive, is far from satisfactory. A quantitative charac-
terization of complexity is necessary. Which “universal” fea-
tures share apparently different compiex systems? The be-
havior of physical systemnis close to critical points may answer
this question. It is well known, from the theory of phase tran-
sitions, that a given system (possibly made of many sub-
systems) can undergo strong qualitative changes in its mac-
roscopic properties if a suitable control parameter is
adequately tuned and that close to these critical points some
key characteristic constants (the so-called critical exponents)
are the same for very different systems [6]. At critical points,
fractal structures, complex dynamical patterns and optimal
information transfer appear in a spontaneous way. Observ-
ing such properties in those systems which we call “complex,”
we can conjecture that complexity tends to appear close to in-
stability points.

In this paper, two main types of theoretical approximations

are considered®: (i) continuous dynamical systems, possibly
including stochastic terms, defined as [1,7-8]

dX/dt=fX) + o(X)§ 1)

where X = (x,,..., x,) € R”, fis a given nonlinear function and
o(X)& a noise term (see below); and (ii) cellular automata (CA)
models, given by a set of transition rules (4],

S, @ = Tlch S 2

where a d-dimensional lattice A, (L) = {k} (k= (k,,...k); 1<k,
< 1) is used. For the CA approach, space and time are discrete
as are, typically, the number of states: S€ £ =10, 1, ..., s - 1}.
Here Tindicates a set of transition rules which can be deter-
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ministic or stochastic. {c} is a set of parameters andr”area
given set of nearest neighboring positions of r. Typically, the
set of neighboring points, Afr), is symmetrically distributed
around the site r, and those CA able to simulate real systems
often verify some particular constraints.

In this section, we summarize the most relevant phase tran-
sitions (PHTSs). To begin with, we use the approach of (1), where
spatial degrees of freedom and explicit local properties are
neglected.2 We will assume that these are nonequilibrium
phase transitions, which are achieved by means of energy or
matter inputs into the system.

First-Order Transitions

Sudden changes in the behavior of nonlinear systems as a
consequence of a continuous change in a given parameter are
well known [1,8]. An example is given by the one-dimensional
nonlinear system

dx/dt=fx) = x*+ px + B. )]
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The stationary solutions of (1) are given by fix) = 0 and are
represented in Figure 1 in terms of the parameter space (i, §),
forming a smooth surface with a fold. If a single parameter, §,
is smoothly changed from negative to positive (from i to fin
Figure 1), the steady state x, is also continuously changed, but,
for a given B, a sudden transition takes place. The state vari-
able jumps from the upper branch to the lower one. In the
language of catastrophe theory, it corresponds to a “cusp ca-
tastrophe” for the x, solutions. Many physical and biological
systems show this type of behavior, known as first-order PHTS.
These types of PHTs are not relevant for our discussion on
complex systems as they reflect a transient phenomenon be-
tween two different states.

Second-Order Transitions
A different type of PHT takes place in the dynamical system
(DS)

dxldt=fix) = -ux - Bx®, @

which can be written as deriving from a scalar potential ¢(x),
dx/dt = —(3/dx) p(x), 5)
where ¢(x) = pux*/2 + fix*/4, also known as the ¢* model [8). The

stationary solutions of (4) are x= 0 and x* = +V-u/B. When
#, B> 0, the single real solution, x’, is stable (i.e., d fix) <0). But

for u > p, = 0, a bifurcation takes place, x? becomes unstable,

and two new solutions (x!)emerge. Any minimal perturbation

from x? will lead to a dynamical evolution towards one of the
new solutions. In Figure 2(a), the bifurcation diagram for x, is
shown: this is a characteristic second-order PHT. Two stable so-
lutions are available when y < 0, and the system must choose
one of them; we then say that symmetry breaking takes place
(1,8]. Figure 2(b) is a mechanical illustration of this process.
Fluctuations can be included in this formal approach by
means of the so-called Fokker-Planck equation (FPE) (7,8]. This
approach is very important in order to analyze real systems,
where fluctuations are inevitable and where probability distri-
butions are the observed data. Starting from a general dynami-
cal system dx/dt = f(x), a stochastic term can be included as

dx/dt=flx) + o)&, 6)

where £ is a white noise with Gaussian distribution and (&) = 0.
It can be shown that the time-dependent probability, fix, ), of
finding x € (x, x + dx) at the time, ¢, is given by the FPE:

L1 2 o)

ot 2 axz [G(x)f ] 4 (7)

where G(x) is a given function defined from f(x) and the noise
term o(x) 2 The stationary solution f,(x), if it exists, is obtained
from

EEx—Z o2(x) f,]+i[c(x)f.] 0 8
and it reads
__K G(Z)
f.(x) oz(x) exp{ 2 2(2) }, 9

K being the normalization constant. Once the
distribution f,(x) is obtained, the moments of
the distribution can be calculated.

Figure 2(a) shows the trajectory of a dynami-
cal system as described by (4) but with a small
noisy perturbation of constant strength o, i.e.,
we have dx/dt = fix) + of. It can be shown that
these small fluctuations are amplified close to
the instability point. At u_ they become very
large. This phenomenon is known as critical
slowing down [6,8] and is a characteristic fin-
gerprint of the onset of a second-order PHT.

First-order phase transition. This surface is obtained from the stationary solutions of eq. (3),
defined over the (1, 8) parameter space. As a given parameter is varied continuously from an
initial value (i) to a new one (f), the system undergoes a sudden shift from the upper branch to

lower one.

These kinds of transitions are more interesting
for several reasons, and they are linked, in spa-
tially distributed systems, with the appearance
of self-similarity and optimal information trans-
fer. Typically, for an arbitrary dynamical system
dx/dt = F,(x), which shows symmetry breaking
for 4 > u, a macroscopic measure 0, (the so-
called order parameter) can be defined over
the system (here 4 means a given [set of]
parameter(s]) in such a way that this quantity
is positive for u > ¢ and vanishes at p_. For a
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second-order PHT, O, grows close to s (when p > p1 ) as 0,=
(- p)'? and the relaxation time of fluctuations behaves near
B liket=|u-p |

The concept of order parameter has been widely general-
ized [1,8] as a cornerstone of the theory of nonequilibrium
PHTs. In this sense, when an arbitrary system (from a laser to
an ant colony) crosses an instability point, x, only just a few
variables become relevant and serve as order parameters
which define the macroscopic pattern. At the same time, these
macroscopic variables govern the behavior of the microscopic
parts. This is the core of what we call “emergent properties.”

Noise-Induced Transitions

further example of PHTs is linked with the response of

some nonlinear systems to multiplicative external noise,

i.e.,, when o= o(x) asin (7). These fluctuations, coupled
in this system-dependent way, can induce new nonequilib-
rium transitions, i.e., qualitative changes in the steady state
of the system, so the system no longer adjusts its macroscopic
behavior to the average properties of the environment but
responds in a more active way. To be specific, we again treata
nonlinear system,

dxldt=a-x+ Ax(1~x), (10)

with x € [0, 1], i.e., the genetic model [7]. In a constant envi-
ronment (A constant), no instability occurs; there is no tran-
sition phenomena; and, with 4 = 0 and « = 0.5, for example,
the steady state is x* = 0.5.

fA=24+08, we have a stochastic process where &, fulfill
the previous properties. It can be shown that the previous
equation can be written similarly to equation (6), being o(x) =
x(1 - x). In Figure 3, the stationary density f£,(x) is shown for
different intensities of noise. A noise-induced transition is
observed where a qualitative change in the shape of the
stationary probability density is generated. In the case of the
genetic model, we can find, for the above-mentioned param-
eters A =0 and o= 0.5, a change in the number of extrema of
f.(x): as we increase the noise intensity o, f,(x) goes from
a maximum in x" = 0.5, i.e., the most probable value will be
the deterministic one, to the appearance of three extrema for
0% > 4, one minimum at x’ = 0.5, and two maxima x,,, so the
system now displays bistable behavior. This is a pure noise-
induced phenomenon. It shows that, sometimes, the knowl-
edge of the average environmental state is insufficient to pre-
dict the macroscopic behavior of the system. In other cases,
external noise can lead to even more profound modifications.*

MEASURING GOMPLEXITY: THE ISING MODEL

Many examples of second-order or noise-induced PHTs are
known from classical and quantum physics: the PHTs when
magnets are heated up (see below); superconductors which
become simple conductors; inflationary models of the early
evolution of the universe, and so forth. In biology, threshold
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Second-order phase transitions. (a) As defined from eq. (4), in a second order
phase transitions, two new branches appear symmetrically from the old one,
which becomes unstable. A symmetry-breaking phenomenon takes place, and
one of the two possible solutions is chosen, as shown by the stochastic trajec-
tory. (b) A mechanical illustration of symmetry-breaking phenomena. A poten-
tial ¢(x) can be represented by a surface with two minima. As the ball moves
down (starting from a symmetric initial condition), any small fluctuation will
decide the final state.

phenomena in cellular dynamics, the collective behavior of in-
sect societies, or the large-scale dynamics of the brain are just
some examples. In all these examples, the system undergoes
dramatic changes in its qualitative properties when the critical
point is reached. But before proceeding further in our study of
PHTS, let us consider the best known model of them, the Ising
model {6], as a reference nonlinear (closed) system formed by
many elements with local interactions. Several relevant mea-
sures of general interest for complex systems will be defined.
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Noise-induced phase transition. Here the deterministic dynamical system given by eq. (10) is perturbed
by means of a multiplicative noise term. The stationary probability density (as given by eq. (9)) is
shown. As the noise level is increased, the single maximum is replaced by two new estrema.

Here k, is the Boltzmann constant and
Tthe temperature. The temperatureisa
very important control parameter: if we
start from a system at high temperatures
and we cool slowly our system, a sud-
den change in the behavior of this sys-
tem takes place at a critical point T, the
so-called Curie temperature. In order to
understand the nature of this change, we
can define a new quantity: the global
magnetization M givenby M=%, S. In
Figure 2(a) we see how this quantity be-
haves. For T> T, M=0as aconsequence
of the effect of thermal excitations on
the interaction of nearest spins. When
T < < T, interactions are not perturbed
and the spins are aligned (so Mbecomes
maximum). Formally, the magnetization
per spin, m = M/N, is shown to behave
asm=0for T> T and as

m=[l—(sinh(2ﬂr))"‘]m

for T < T.. Close to T, (for T < ), m be-
haves as m = {7|* where is the so-called
reduced temperature, i.e., 7= (T-T)/T,.
The exponent ¢ is named a critical ex-
ponent. Generally, the critical exponent
A associated with a function F(#) is de-

fined as A = lim,_ [log|F(#)|/log|4}, i.e.,
E(t) = {ir

Correlations and Percolation

At the critical point, something happens.
What?The behavior at the critical point,
T, can be visualized by means of the
simulation model. In Figure 4 we see

Micrescopic Model

Consider a two-dimensional square lattice of length side N
(in one dimension, no PHT is obtained). The state of each
lattice site, i, is indicated as S (i) for each time step, ¢. Time is
assumed discrete, and ¥, = {~1, +1}. Each “spin,” S (i), inter-
acts with its four nearest neighbors through an exchange
interaction, J, which favors parallel alignment (the least-
energy configuration).

The dynamics of the two-dimensional Ising model is
easily simulated by computer. For each time step, we pickup
at random a single spin, S, and its local field, h, defined as
h,=J% S, (the sum is carried out over nearest neighbors), is
computed. Then the i-th spin will change with a probability,
W, given by [6]:

W(S) = P(S,—-S) = (1/2)[1 - S, tanh(h,/k, D). (A1)

three examples of this system for three
different points: for (a) T=1.2 T, for (b) T= T, and for (c) T=
0.95 T.. For temperatures greater than the Curie temperature,
entropy dominates over energy, and the distribution of spins
is essentially random (Figure 4(a)). We say that the so-called
correlation length £ is small. It expresses the typical distance
over which the behavior of a microscopic variable is corre-
lated with (influenced by) the behavior of another. Close to
T, & scales as &~ |1, v being another critical exponent. Be-
low the critical point, the model is said to exhibit long-range
order: the exchange interaction works over thermal pertur-
bations (Figure 4(c)). Now let us move towards the critical
point. If we observe this state (Figure 4(b)), we see that both
types of spins are equally represented, but their distribution
appears to be clustered in a non-trivial way. In fact, if a large
enough sysiem is seen, we can appreciate the existence of a
self-similar pattern (i.e., a fractal object). There is no upper

COMPLEXITY

© 1996 John Wiley & Sons, Inc.




cut-off length, and ordered structures exist on every length
scale. In fact, this is the microscopic physics underlying a criti-
cal PHT: fluctuations on all scales of length are meaningful.
The correlation length, & also represents the typical dis-
tance of connected cluster of spins. For a fixed £, fluctuations
of blocks of all sizes up to size & can be found. When moving
towards the critical point, & diverges to infinity, and so does
the size of the maximum connected cluster. This means that
there is a connected path on this cluster that spreads from

one side of the system to the other. When this happens, the |

system is said to percolate. There are many different types of
percolation [9], depending on the geometry of the system and
on the existence of correlations in the formation of connected
sites. The simplest example of percolation consists in ran-
domly filling the sites of a square lattice with some probabil-
ity, p. If pis increased from 0 to a critical value, p, the proper-

ties of a second-order PHT are recovered: one finds divergency -

of the correlation length and of the size of the clusters (until,
atp=p, a percolation cluster that connects both sides of the
system appears}. At the critical point, the system displays
fractal geometry (the size of the clusters scales following a
power-law that helps to characterize the transition, too), and
fluctuations of all sizes can be found. At or close to a critical
point, the amount of information that might be transferred
throughout the system is maximal.

Percolating systems are likely to be very robust against ex-
ternal perturbations, provided that each and every different
size is already considered in the system, both in space and in
time.

Entropy and Mutual Information Functions

efore continuing, we must define two additional mea-
B sures that will be used in the next sections. Here we con-

sider a given system formed by many subsystems (as in
the Ising model). Let {x}withi=1,2,...,m, a given set of values
x, € X, where #(3) = S. Here {x} can be a time series obtained
from one of the subsystems, or the complete set of current
states, or a combination of both. And let us assume that we
can define two sets of probabilities {F,} and {F, }. Here P, will
be the probability of observing the ae ¥ state, and iR, g, the
probability of observing both , Be 3 states. These probabili-
ties would be obtained by averaging over time; or averaging,
at a given time step, over the elements of the system; or both.

Then the Boltzmann (Shannon) entropy is given by

H= —ZP,, log[R,] 12)

ael

and the mutual information by [10, 11]:

M= -Z{ 2P IOE{%J}. (13)

ael | el

The first quantity gives us a measure of disorder, and it is
fitted by 0 < H < log(S), which corresponds to the simplest

Phase transitions and the Ising model. Three snapshots of a 200 x 200
lattice of spins are shown for different temperatures, 7. (a) 7= 1.2 T,

(b) T= T, (critical point, Curie temperature); (c) 7= 0.95 T.
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Information

state (P, = 1; B, = 0) and the uniform distribution (2 =1/S,
Vae 3). If we consider the Ising model, this can be observed
for the entropy per site. It is given by H = —{ ploglp)+(-p)
log (1 - p,)}, and is H=0 at low temperatures (when 7 — m,)
and H=log(2) at high temperatures. Using the same example,
let us now consider two neighboring spins, and let us calcu-
late the previous probabilities by averaging many steps over
time. Atlow temperatures, the system is very ordered, and we
have to expect P;—-) lorP_—1, and so M — 0. At the other
extreme, both elements will behave randomly and nearly in-
dependently, and so we have to expect P = FuFy and so again
M — 0. Atintermediate values, when correlations emerge close
to the critical point, we expect a maximum in M,%as shown in
Figure 5.

GELLULAR AUTOMATA AND PHASE TRANSITIONS

Though the Ising model is a very good representation of a wide
set of equilibrium physical systems, we can ask ourselves if
other (now open) open complex systems can be equally well
represented, at least in their qualitative properties. Cellular
automata (CA) models have been widely used as models of
complex phenomena {12]. They also exhibit PHTs (see [12]).

Deterministic Cellular Automata (DCA)

Invented in 1948 by the Hungarian mathematicians Von
Neumann and Ulam, these dynamical systems are defined in
a general way by (2). These models exhibit an enormous
variety of spatio-temporal patterns, but they can be classi-
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Mutual information, M, (as defined in Section 2.3) for the Ising model.
The information transfer between two nearest spins has been calculated
using a 20 x 20 lattice, averaging over 500 time steps, and using 50 con-
figurations. A maximum is obtained at the critical point.

fied into four main qualitative categories (Figure 6(a-d)):
(a) Class I: evolution leads to a homogeneous state (steady
attractor, fixed point); (b) Class II: evolution leads to a set of
localized stable and/or periodic structures (periodic
attractors); (c) Class III: evolution leads to chaotic patterns
(chaotic attractor); and (d) Class IV: evolution leads to com-
plex localized structures with very long transients. These
automata are the only ones able to perform universal com-
putation (Figure 6(d)).

This scheme was revised by means of Langton’s A param-
eter [4]. Following the notation of Section 1 and using = #(%))
and x = #(A), we can define Langton’s parameter for a given
CAas

S*—n,
SK

A= 14)
Here §** is the number of all the possible transitions for a
specific rule-table, and n , is the subset of such transitions (in
the rule-table) leading to the so-called quiescent state (usu-
ally 0). This parameter gives a rough quantitative charac-
terization of the CA complexity. Using A4, we can order the
automata rules following the sequence Class I — Class IT —»
Class IV Class I1I, and so the complexity of CA rules is or-
dered. It has been shown thatinformation grows up to a maxi-
mum at a “critical” A, where class-IV automata are observed,
This fact suggests that computation in natural systems should
emerge close to PHT points [3, 4] (see also Haken 8, 14] for a
detailed discussion of physical systems). The H— M diagram
shows us how complexity (M) and disorder (H) are related:
information needs some degree of order to be stored (low en-
tropy) but also some degree of disorder if transmission and
manipulation are necessary [8, 15]. The critical point, where
the maximum Mis obtained, shows the compromise between
both tendencies. This conjecture is known as computation at
the edge of chaos, but the A parameter, as first defined by Chris
Langton, has been shown to be flawed. For example, the work
of Mitchell, Hraber, and Crutchfield [13] has shown that sym-
metry-breaking processes can impede the evolution toward
higher computational capability.

Stochastic Cellular Automata (SCA)
As happens with continuous, noise-driven systems (see the
first section), CA models incorporating noise (the so-called
stochastic cellular automata, [15]) can generate unexpected
patterns of behavior. A study of the simplest one-dimensional
DCA (5= 2, x=3) shows that they do not exhibit class-IV be-
havior.® But some SCA, which are classified as class-Iif no ran-
domness is used, belong to class-IV for a suitable noise level.
Stochasticity can be introduced in several ways. For ex-
ample, if a one-dimensional CA is used, with T = {0,1} and
coupling with nearest neighbors, the i-th automaton takes the
value ¢ € ¥ according to a conditional probability: P(S, ()=
HIS(i-1), S(D), S, (i + 1) ]. It can be shown that by means of
a percolation phenomenon (the so-called directed percola-
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Patterns of behavior of one-dimensional cellular automaton models, as defined by Wolfram’s classification: (a) class I; (b) class Ii; (c) class Ill; and (d) class iV,

tion [9]), complex patterns emerge at critical points, with sta-
tistical properties reminiscent of class-IV DCA. In other cases,
a small amount of noise (something unavoidable in real sys-
tems) can modify the long-term behavior of a class-II CA in such
away that the transient structures (which can look like class-IV
propagating structures) are stabilized by means of noise.

SELF-ORGANIZED CRITICALITY

s we have seen, complex patterns involving the appear-

ance of fractal structures are observed at critical points.

Fractal forms are widespread in nature, from mountain
landscapes and river networks to clusters of galaxies. Other
self-similar patterns are observed in the time evolution of
many systems which exhibit the so-called 1/f noise. But the
origin of such patterns has been a matter of debate for a long
time. Free-scale behavior seems to be linked with complexity.
How does it emerge?

The Sandpile Automaton

In 1987, Per Bak, Chen Tang, and Kurt Wiesenfield [16] sug-
gested a new theory which they called “self-organized criti-
cality” (SOC). They suggested that a wide variety of natural
dissipative systems spontaneously evolve toward the critical
point. No tuning of some external parameter is necessary, and
in this sense these phenomena should be “parameter-free.”
The best known example of a physical system exhibiting SOC
(atleast in some cases) is the sandpile (Figure 7(a)). When we
build the pile of sand by adding a few grains at a time, the
slope grows until a maximum value is reached. Once this situ-
ation is obtained, the addition of new grains very often gen-
erates small avalanches. Larger avalanches are less common
but also occur. From time to time, a very large avalanche takes
place. These events generate a 1/fdynamics (i.e., self-similar

fluctuations in time), resulting in a critical state: the distribu-
tion of avalanches is, in fact, a power law.

Bak et al. [16] suggested that a simple cellular automata
model (the sandpile automaton, SA) is able to reproduce the
observed behavior. Let us consider a two-dimensional grid
where the “state” of each point is given by the local “slope,”
z(i,j). There are two essential rules defining the automaton:
(i) Addition of a unit: we randomly choose a grid point and
add a “grain”: z(i,f) — z(i,f) + 1; and (ii) Toppling: if the local
slope is larger than a critical value, K, (usually K = 4 with
Neumann neighborhood), then some units are transferred
to nearest positions: z(i,j) - z(i,j) ~4and zG £ 1,j+ 1) —»
zZ(ix1,j+1)+ 1.

Power laws are a consequence of the self-organization
process: once the pile reaches the critical slope, the model
exhibits the general features of the sandpile. In particular, if
we study how many avalanches of each size occur after the
addition of a single “grain” to the pile, we find that the dis-
tribution of events where a total of s sites topple obeys a power
law (Figure 7(b)): N(s) = 5% Thus, if one waits long enough,
one will certainly see events that are as large as one has the
patience to wait for. As Bak has pointed out, avalanches are
an unavoidable and intrinsic part of sandpile dynamics. On
the other hand, the spatial distribution of critical slope K
also shows fractal behavior. This result strongly suggests a
nontrivial connection between temporal and spatial self-
similarity [17].

$0C and Universality

The sandpile model (and other models of real systems which
exhibit SOC) is only a metaphor of the real sandpile but a pow-
erful one. The key word for. this consistence is universality.
What this means (and it is particularly true for critical sys-

© 1996 John Wiley & Sons, Inc.

COMPLEXITY




FIGURE 7 |

a
B 1000 -
] LN
] O 50 x 50
: “o‘,
b,
1 %
e,
—~ -,
£ 1004 e
- ‘.‘.\.»

10 T T T T T 1777 T "Tllllq
| 10 100
S

{a) The real sandpile; (b) power-law distribution obtained from a computer
simulation of a two-dimensional sandpile cellular automaton, as defined in
The Sandpile Automation section

Properties of Kauffman nets for different values of K
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tems) is that important features of large-scale phenomena are
roughly insensitive to the particular details of the models and
are shared by very (apparently) different systems. Thus, it has
been suggested that earthquakes or even turbulence would
be associated with SOC phenomena (see [17]) belonging to
different universality classes. Actually, this is the only known
mechanism by means of which an explanation for self-orga-
nized complexity is obtained. Whether or not SOC is a univer-
sal mechanism of “complexity generation” will be a matter of
future research.

EXAMPLES: MODELS AND REALITY

We now present several examples of complex systems exhib-
iting critical properties and introduce some theoretical ap-
proaches to phase transitions.

Kauftman Networks and Genome Stability

Random Boolean networks (also known as Kauffman net-
works, KN) were first proposed by Stuart Kauffman as simple
(yet reasonable) models of genetic systems [18]. Since their
definition in 1962, they have become one of the most cel-
ebrated models of complex systems. In these networks, a set
of N binary elements is used. The state of each element at a
given time step, ¢, is given by S,(8) € {0, 1}, (i=1,...,N). The dy-
namical state of ,(#) is updated (synchronously) by means of
a Boolean function, A, Each element receives inputs from
exactly K elements, resulting in a dynamical system defined
from

S+ 1)=A, 15,8, S,1,... §,(0] (15)

(i=1,2,...,N). The critical point, K was analytically determined
by Derrida and his colleagues [19] in a set of remarkable theo-
retical studies using the so-called annealed approximation.
The dynamical and structural properties of the critical point
can be well understood by means of a very interesting ex-
ample: the problem of cell differentiation from the global ac-
tivity of a complex genomic system.

All cells in a multicellular organism share the same genome
formed by N genes (and some amount of selfish DNA). If we
assume (reasonably) that genes are essentially on-off ele-
ments, a given differentiated cell (a neuron, akidney cell, etc.)
is characterized by a subset of active genes. The number of
different cell types is not arbitrary and much less than N. Why?
The existence of a critical point in KN might be the answer.
The key assumption of Kauffman'’s theory is that a cell type is
an attractor, more precisely, a state cycle attractor. Starting
from different initial conditions (IC), a KN evolves toward a
more or less complex periodic pattern, the system’s attractor.
Several IC can reach identical attractors, forming a basin of
attraction, The global properties of these attractors—i.e., their
length, number (n,) and stability against small perturba-
tions—are controlled by the connectivity, K, and are summa-
rized in Table 1.
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AtK =2, nets crystallize spontaneous order. KN with criti-
cal connectivity exhibit unexpected and powerful collective
order. Both the expected length of state cycles and the num-
ber of attractors are r1, = O(VN). This implies that in a genome
of 10,000 elements with 2109 = 103%° combinations of activi-
ties, only 100 asymptotic patterns (different cell types) are ob-
served. Another property of critical KN is that (as cells) each
attractor is stable to most minimal perturbations. We have,
then, an example of PHT where the properties of real genomes
and cells are found to appear. Even if a distribution of input
connectivities is used instead of a fixed K, the previous results
are obtained [20]. A very important consequence of these re-
sults is that the observed properties involved in genetic regu-
latory systems would be the result of intrinsic dynamical pro-
cesses and not just the action of natural selection.

Social Insects and Swarms _

ocial insects are a paradigmatic example of the collec-

tive properties that might emerge from a set of simple

individual entities. The appearance of social behavior
is a quantum leap in evolution: the insect societies have found
their place in all ecosystems [21]. In spite of the fact that so-
cial insects in isolation typically have a rather simple behav-
ior, the colony as a whole is able to perform very complex tasks,
including computation. Insect societies share common features
with neural structures like the brain: (i) They are formed by a
more or less large number of elements (neurons, say, or ants)
which interact locally; (ii) Single elements display a reduced
number of behavioral patterns; (iii) When we look at the sys-
tem as a whole, macroscopic patterns of activity emerge as a
result of local interactions among elements that are not re-
ducible to the behavior of single units; and (iv) The dynamics
of these systems is robust against noise, failure, or even the
removal of single units,

The remarkable studies of Deneubourg and his colleages
of the Bruxelles school [22] early showed that several patterns
of activity in social insects were linked with self-organization
processes. These phenomena are sometimes the result of a
symmetry-breaking mechanism (22, 23] like those analyzed
in the section Second-Order Transitions.

As an example of computation at the edge of chaos in ant
colonies, let us consider the colony oscillations of the Lepto-
thorax ants (24, 25]. These colonies show a striking pattern of
global short-time periodic oscillations of activity. The num-
ber of active individuals moves up and down in a roughly pe-
riodical way. It is also known that individual ants are not peri-
odic but chaotic [26] indicating that global behavior is an
emergent property. As the density of individuals is increased
(this can be done experimentally) from low to high, the co-
herence of these oscillations becomes more and more clear.
In natural conditions, the nest density appears to be at an in-
termediate value where neither total order nor total disorder
is allowed (see [27]).

It has been conjectured [28] that this phenomenon enables
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Mutual information in a fluid neural network (see section Social Insects and
Swarms), calculated for different densities of automata on a 10 x 10 lattice,
and following two given individuals over 10 time steps. A maximum is ob-
tained at a critical density.

ants to perform mutual exclusion (ME). ME is an important
general problem of concurrent programming, an instance of
which is resource allocation. We say that activity A, of process
P, and activity A, of process P, must exclude each other if the
execution of A, may not overlap the execution of A,. In our
case, mutual exclusion is attained with the combined effects
of autosynchronization and the spatial arrangement of brood
in the nests of L. acervorum, which appears to limit the num-
ber of workers that can access the brood simultaneously (28].

On the other hand, we have introduced clear evidence that
the phenomena of autosynchronization is due to a state de-
pendent external noise in the form of both a spontaneous
activation and a density dependent activity propagation, giv-
ing rise to a noise induced transition (29]. Using the formal
approach of fluid neural networks [27], we have shown that, if
the entropy and mutual information are calculated (by aver-
aging over time the states of pairs of individuals), maximum
information is reached at a given critical density, p, (Figure 8).
For a biologically plausible set of parameters, we have the tran-
sition at the same p_= 0.2; this has been observed experimen-
tally. These facts point to the possibility of a noise-induced
computational capability in the colony, for which we have
coined the term noise-induced computation [29].

Macroevelution and Extinction

In the neo-Darwinist view of evolution, the interest in individu-
als as the units for selection has been shifted towards genes. In
this framework, evolution is then understood as the temporal
changes in gene frequencies driven by natural selection. In the

© 1996 John Wiley & Sons, inc.
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Power-law behavior of the Bak-Sneppen model of large-scale evolution. The lifetime of “evolutionary
avalanches” is shown. It is conjectured that this quantity is related to the life span of species over time.

Some theoretical models have tried

e v e e b et Lyl i
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to shed light on this problem. One is the
Kauffman-Johnsen (KJ) model based
on random Boolean nets [18). The
other, simpler one is the Bak-Sneppen
(BS) [33) model defined by the follow-
ing set of rules: We consider a string of
N random numbers, x, € (0, 1), which
are the “species” of our ecosystem. The
steps are (a) we choose the minimum
x;,and change it by a new random num-
ber, x.€ (0, 1); (b) the two nearest neigh-
bors are also changed: x,,, € (0,1), X, €
(0, 1) (periodic boundaries are as-
sumed); and (c) the previous steps are

o] repeated.

In this model the quantities {x} play
-] the role of a “barrier height,” separat-

a ing the local fitness maximum from
other better maxima. In other words,
the barrier height is a measure of how
far the i-th species is from its maximum
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log (1)

fitness. Then if the fitness, x,islow, itis
0 more likely to find nearby better states.
In the BS model, the barriers are the
measure of stability: smaller barriers
are more unstable and easily changed.
In spite of the oversimplified nature of
this model, it is able to show punctu-

general case where mutations and selection are considered, the
evolution of gene frequencies follows a nonlinear stochastic
differential equation for the gene frequency x:

(x,) Fflxt) (x,1)
%—:—d)”(x) gzx +‘l’,,(x)afax _ (16)

Here @ (x), ¥ ,(x) are suitable continuous functions incorpo-
rating the specific type of mutation, selection pressures, etc.
We also see diffusion and drift terms (the partial derivatives
over x). Once the whole set of parameters is known, the steady-
state solution (i.e., f,(x) such that d,f= 0) gives us the final fre-
quency distribution. Implicitly, it is assumed that these theo-

_ retical approaches can be translated to the large-scale events

and so explain extinction patterns and species diversification.

ome data from the fossil record, in fact, suggest that a

critical, emergent phenomenon would be behind the

overall pattern of macroevolution. First, there is the fre-
quency distribution of extinction events, which fits a power
law [30]. Second, there is the existence of fractal scaling in the
structure of taxonomic data [31]. More recently, the study of
time fluctuations of some fossil families has shown the exist-
ence of 1/f behavior [32].

ated equilibrium [34] in terms of bursts
of change into the ecosystem. It also shows power law distri-
butions of several quantities (Figure 9). These properties are,
in fact, shared by such other complex systems as economics,
and it has been conjectured that punctuated equilibrium is a
common property of all complex systems [30).7

Quasi-Species and the Error Catastrophe

Consider a set of molecules (RNA chains, viruses, etc.). We in-
dicate by I, a given sequence (assumed to be a string of bits of
length v). We can imagine the phase space of our system as a
v-dimensional hypercube. Up to 2 different molecules are
possible. We assume that replication of molecules takes place
together with mutations (i.e., errors). Selective pressures can
be introduced in such a way that some sequences survive and
others do not. The mutation rates between a given pair {I, L}
are indicated as W, (where i, k = 1, 2,...,2"). It can be shown
(36] that the population n (1) of the i-th sequence, I, will evolve
in time following the dynamical system

dn,(t) _ n; (t)

.,n,(t)+Zw,knk(t)—

ki

T an

where W, are the mutation rates from I, ,, to I, and W, is the
net productlon of I, through (correct) self-copying. It is de-
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fined as W, = AQ, - D, where 4,and

D, give the rate constants of total
(correct and erroneous) replication
and degradation, respectively. The ~
factor Q,, is the frequency of correct .
copying, the so-called quality factor. -2.5
It can be indicated as Q, = ¢*, q be-
ing the mutation rate per unit. Fi-
nally, the last term on the right stands
for the dilution flux that removes
molecules in proportion to the
amount produced.

Now one of the most important 1
consequences of thismodelistheap- -7.5-
pearance of a final distribution of se- . "
quences (not just one). This distribu- D
tion is known as a molecular

log(x,)
o
[ =)
|

f
i
quasi-species. It is formed by a given 1i / / / 4

_
-

(dominant) sequence I_, also known
as the master sequence, together with 0.00
a set of mutants deriving from it.
These mutants are grouped around

populations are typically formed by a
highly dynamical quasi-species.

threshold.
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Error rate (1-9)

5

the master sequence in such a way The error catastrophe. Using the model defined by eq. (17), we plot the stationary concentrations of the
that often their average sequence concentrations x =,/ 3 n,(k=1,...50). More precisely, here n,is the frequency of those sequences which
equals that of the master. Retroviral differ in kbits.f.rom the master sequence. As the error rate ig increased, a critical bqundary is reached where

a phase transition takes place. It has been shown that, typically, RNA viruses replicate close to such error

The interesting point is that g
plays the role of a temperature.* The nonequilibrium Darwin-
ian organizing process has a clear parallel in the existence of
order-disorder PHTs. In our case, very small g values (high fi-
delity, g — 0) lead to a single copy (a uniform virus popula-
tion), and very high error values (g — 1) lead to a totally ran-
dom set of molecules without any biological identity.

It can be shown that a PHT point exists for a critical fidel-
ity £, (or error threshold g given by [36-38]

g=1-q,=Ln(c)/v. (18)

In Figure 10, we see how £ operates on the stationary distri-
bution of sequences for v = 50. We observe a sharp transi-
tion, known as the “error catastrophe,” at £,=0.08. At the left-
hand side, the master sequence dominates, but once reached
(when ¢ > g), it becomes a small fraction inside a random
population.

How is ¢, related to viruses? For a retrovirus, very small &
means to be very sensitive to the immune response. The cells
of the immune system recognize very specific foreign mol-
ecules. Once detected, the molecules can be removed. Viruses
will survive only if new mutants are generated fast enough. But
obviously, € should be less than ¢, or the new sequences will
notbe functional. Where are real viruses organized? Experimen-
tal evidence shows clearly that retroviruses are typically self-
organized very close to the error catastrophe (39]. In this sense,

RNA viruses explore their “RNA world” [38] by moving toward
the edge of disorder. In this way, the broad spectrum of mu-
tants makes evolutionary optimization faster. The virus popu-
lation is less likely to be caught in local fitness optima.

Diversity and Rainforest Dynamics

omplex systems find one of their brightest examples in

the tropical rainforest. The great variety of species, even

in local areas, is legendary. Since the early days of eco-
logical theory, the causal explanation for this phenomenon
was that the species composition of such ecosystems is main-
tained near an equilibrium state. But other analyses soon sug-
gested a different explanation: that high diversity is main-
tained only in a nonequilibrium state [40], in a state of
“intermediate disturbance.” Here “disturbance” means an
external one. However, the system can be maintained far from
equilibrium by means of its internal dynamics. A recent study
(41-42] has shown that the spatial distribution of trees in a
rainforest (the Barro Colorado Rainforest, in Panama) shows
(multi-) fractal properties. Specifically, we analyzed the spa-
tial distribution of those locations where the size of the canopy
is less than 10 meters (usually, the canopy reaches 50-60
meters high). These low canopy points are the result of recent
treefall. Treefall and gap formation are known to contribute,
very importantly, to the generation and maintenance of di-
versity in rainforests. The frequency distribution of gap sizes,
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N(G), was also shown to be a power law N(G) = G with y=
2.01 £ 0.24 (Figure 11). These results strongly suggest that the
Barro Colorado (and maybe other rainforests) might be an
ecosystem poised at a critical state.

With only these quantities at hand, the evidence of criti-
cality is appealing but may not be conclusive enough. Again,
theoretical models come to our aid. A CA model of forest dy-
namics, the Forest Game (FG) [41, 42] can be used to analyze
the previous conjecture. The model is defined on a L x L lat-

tice where trees of size S, € [0, S ] are defined. A simple set of
rules is (asynchronously) applied. We take a lattice point at
random and allow the following possibilities:
B, P
(i) Birth: 08, (ii) Death: $—0 and S, —0;
®
and (iii) Growth: S5S+AS.

Here P, and P, indicate the death and birth probabilities. When
a new tree is born, it has a minimum size, S, = 0.1. The third

3
r NS
~N Yge=2.01 2 0.24
7 wm=2.0010.10
0.1
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Power-law distributions of gap sizes for the Barro Colorado rainforest (dashed line) and
for the forest game cellular automaton (continuous line). The last curve has been calcu-
lated at the so-called “complex forest” domain of parameter space. The agreement be-
tween these sets of data seems to suggest that the Barro Colorado rainforest would be
poised at the critical state.

T —

Phase transitions and complex systems (SOC: self-organized criticality)

SYSTEM MODEL(S) PARAMETER PROPERTIES
Ferromagnet Ising Model Temperature Fractals/Power laws
Sand pile Sand pile CA SOC 1/Fnoise
Macroevolution KJ/BS models SoC Extinction patterns
Rainforests Forest Game Interaction strength Fractal patterns
RNA viruses Eigen Model Mutation rate Error catastrophe
Ant colonies Fluid Neural Nets Density Maximum | transfer
Brain Dynamics JFHK model Behavioral Critical slowing down
DNA Genome Kauffman nets Connectivity Antichaos

transition introduces a critical (maximum) size, S .
Finally, the fourth transition enables trees to grow,
provided that a given condition is fulfilled. Specifi-
cally, the growth term is defined by

=i

where ®(z) = z if z > 0 and zero otherwise. y is the
strength of the interaction, and the sum is extended
over the eight neighbors. An additional rule of gap
creation is included: as a tree falls, a gap in the
canopy is created by removing all neighbors in such
a way that the total biomass removed cannot be
larger than the size of the falling tree. Then we study
how the dynamics is modified as yis changed. When
very small yare used, the FG shows coherent behav-
ior: local parts of the forest become highly synchro-
nized. At high v, the forest becomes frozen with a
random pattern of disperse gap points. For large p,,
the forest becomes disordered. But for a wide set of
intermediate interaction values, a complex forest is
observed where all the observed properties of the
Barro Colorado plot are reproduced, particularly,
those properties linked with a system at a critical
state: (a) Fractal behavior of gap points (with multi-
fractal spectrum); (b)Power-law distribution of gap
sizes (Figure 11) with y=2.0; and (c) 1/f-fluctuations
of biomass.

The agreement of theoretical and field results sug-
gests that rainforests are certainly in a nonequilibrium

_state; in fact, they are on or close to a PHT point. A

direct implication of this result is that high diversity
is a consequence of criticality. Again, a very simple
model (we use only one “species” of tree instead of
the 186 known species of trees in Barro Colorado)
leads to a good description of the rainforest, which is
expected when universality is involved.

SUMMARY AND PROSPECTS

We have reviewed several theoretical problems involv-
ing the existence of PHTs and critical phenomena in
natural complex systems. Other studied, for example
the large-scale dynamics of brain activity as an exter-
nal stimulus is slowly changed [43], show clearly those
properties expected in PHT phenomena. A simple
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theoretical model [44] in which the main experimental results
were well reproduced.

These systems, their nature, parameter dependence (if
any), and implications are summarized in Table II. In some
cases, the existence of a critical boundary is important as an
organizing principle: the genome (and the underlying patterns
of cell differentiation) or the existence of computational pro-
cesses in ant colonies are only two examples. Sometimes they
are linked with a mechanism of diversity generation (as in RNA
viruses and rainforests), and sometimes they can introduce
sudden changes in the complexity of ecosystems as when
landscapes are fragmented below a critical threshold [45).

In modeling real systems, two general comments are in
order. First, if complexity is linked with critical states, thena
simplified model is justified, as far as it is able to reproduce
relevant properties of the real system. Then there is the mat-
ter of constraints: biological systems are often limited in their
structural and dynamical properties [46]. Thus, itcanhappen
that not all points in the parameter space need to be avail-
able, and sometimes exact critical states might be not ob-
served. Second, if SOC is a robust phenomenon able to drive
complex systems toward the critical point, it is assumed that
the final state is reached through a parameter-free process.
This makes it apparently necessary that the underlying model
be explicitly parameter-free. Though this can be done, a pa-
rameter-dependent model (as it is the forest game) where dif-
ferent types of dynamical states are observed, can neverthe-
less be used to detect criticality in the real world. This is
achieved if the parameter-space of the theoretical model has
a critical domain where a PHT takes place. If the predicted
properties at this point match those observed in the real sys-
tem, then the next step will be to look for a mechanism of evo-
lution towards such boundary.

hese results are only some examples of the rich variety

of PHT phenomena occuring in complex systems. They

show how simple, nonlinear models are able to capture
the essential properties of real systems close to critical points.
How general this situation is will be a matter for future re-
search, but clearly, as Prigogine and Stengers [47] write, “the
more complex a system is, the more numerous are the types
of fluctuations that threaten its stability.” There is little doubt
that the interplay between fluctuations—amplified through
nonlinearities—and stabilizing phenomena (as diffusion) find
their most creative boundary at the edge of chaos.

ACKNOWLEDGMENTS
The authors would like to thank Brian Goodwin, Per Bak,
Octavio Miramontes, Ton Sales, Jonathan Silvertown, Esteban
Domingo, and Scott Kelso for several useful comments and
for providing preprints. This work has been partially supported
by grants UPC PR9407 and DGYCIT 1995 PB94-1195, CIRIT
| F193/3008 (JD), and by a postdoctoral grant of the Spanish

LMinistry of Education and Science (JB).

© 1996 John Wiley & Sons, Inc.

FOOTNOTES «

1, Other important approaches. where phase transitions can aiso be
explored are, for example; reaction-diffusion models and coupled map.
fattices. l

These are known as mean field theories.
Two possible G(x) are used, the so-called () Tto (G = () and
(i) Stratonovich (G(X).= %) + [9,0%(x)14)

It can be shown that: as in the section Second-Order Transitions,
Dprobabilistic potential: V{X) can be definad if stich a way that we can
wiite . () = Kexpl=2V(x) /o] (see [7])- ,
When #5 2 thissituation can be more complicated, as shown byW.l
il

Except perhaps rufe 193.

This observation was fitst reporied by B, Huberman et al in selation
with-economics and ihe so-salled “computational scologies” {351

It has been shown by Leuthausser that Eigen’s evolution model is
equivalent to a two-dimenisional Ising model [371.
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