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Very long transients in globally coupled maps
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Abstract. – The general classification of the phase-space of globally coupled logistic maps,
introduced by Kaneko (see Kaneko K., Phys. Rev. Lett., 63 (1989) 219; Physica D, 41
(1990) 137), is substantially modified. Our numerical investigations show that in the parameter
region of the former “glassy” phase the asymptotic behaviour actually corresponds to single
attractors or networks of several Milnor attractors described by partitions with only a few
clusters. This asymptotic regime is found after very long transients and persists when weak
noises are introduced. The prevalence of cluster partitions with a large number of clusters,
proportional to the size of the system, was previously reported in this region (Kaneko K.,
Phys. Rev. Lett., 63 (1989) 219; Physica D, 41 (1990) 137) and considered as its defining
property.

Globally coupled maps (GCM) formed by ensembles of logistic maps have been used as
a paradigm of complex collective dynamic behaviour for a decade [1–5]. Originally, GCM
were introduced as a mean-field approach to coupled map lattices [6], but later the non-trivial
dynamics and the rich collective phenomenology displayed by that system made it a subject
worth of study in itself. One of the main properties of globally coupled logistic maps is the
presence of different phases characterized by turbulent (non-synchronized) behaviour, cluster-
ing, and global synchronization [2]. The formation of a number of subgroups of synchronized
elements out of a symmetrical ensemble has a high relevance for many applications, such as
the organization of the immune or the neural system, ecological networks, cell differentiation,
and structuring of social hierarchies. Therefore, the GCM phases in which the system displays
clustering have been intensively studied [1, 3, 7–10].

The former studies about the complex collective behavior displayed by GCM are usually
based on the classification of the phase-space introduced by Kaneko [2]. This fundamental
classification includes coherent synchronous, clustering, and turbulent asynchronous dynam-
ics. In the clustering domain, two different dynamical regimes were found. In the ordered
phase, the final attractors were formed by a few clusters, independently of the system size.
The ordered phase was separated from the turbulent phase by the “intermittent” region (or
partially ordered phase of type I) and from the coherent phase by the “glassy” phase (or par-
tially ordered phase of type II). The defining property of these two partially ordered phases
c© EDP Sciences
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were attractors formed by a large number of clusters, proportional to the system size. As we
report here, the partially ordered phase of type II is actually equivalent to its neighboring
ordered phase, and essentially differs from the behaviour in the partially ordered phase of
type I, where our analysis confirms the previously reported behaviour.

The simplest globally coupled discrete-time system is given by

xi(t + 1) = (1 − ε)f(xi(t)) +
ε

N

N∑

j=1

f(xj(t)) , (1)

where the individual element evolves according to the logistic map f(x) = 1 − ax2, N is
the total number of maps and ε specifies the coupling strength. In general, an attractor
of this dynamical system is formed by a number K of synchronous clusters each containing
Nk elements, k = 1, . . .K and can be characterized by means of the partition (K; N1 ≥
N2 ≥ . . . ≥ NK). For convenience, this classification also includes one-element “clusters”
(Nk = 1) that actually correspond to individual non-entrained elements. Thus, the partition
(N ; 1, 1, ..., 1) corresponds to the asynchronous state of the entire ensemble, while the partition
(1; N) represents its fully synchronous state, where all N elements belong to a single cluster.
In addition to these two states, the system would generally also have other partitions where a
certain number of synchronous groups of elements with N > K > 1 are present. The choice of
an attractor with a particular partition is determined by the initial conditions. The attractor
corresponding to each initial condition is characterized by a certain number Km of clusters
after a transient has elapsed.

The phase-space of the GCM (1) has been described by Kaneko [2] using the average cluster
number K =

∑M
m=1 Km/M, where the index m = 1, . . . ,M enumerates the set of employed

initial conditions. Four different phases have been identified [2]:

1. Coherent phase. The elements follow the same trajectory (xi(t) = xj(t), ∀i, j; t),
forming a single synchronous cluster (K = 1).

2. Ordered phase. Almost all basin volume is occupied by a few-cluster attractor (K is
small and does not grow with N).

3. Partially ordered phase. Coexistence of many-cluster and few-cluster attractors (K is
large and grows with N).

4. Turbulent phase. No synchronization among the elements (K = N).

The coexistence of many-cluster and few-cluster attractors has been observed by Kaneko in
two different parameter intervals. One of them separated the ordered and the turbulent phases.
Here the system is in the partially ordered phase of type I, also called the intermittent phase.
The other interval lies between the regions occupied by the ordered and coherent phases. In
this interval the system is in the partially ordered phase of type II (called the “glassy” phase
in the initial publication [2]). The typical parameter intervals are 1.56 < a < 1.80 for ε = 0.3
(partially ordered phase of type II) [2, 11], and 1.58 < a < 1.69 for ε = 0.1 (intermittent
phase) [2, 8, 9, 11].

To compute the asymptotic properties of a dynamical system, one has to ensure that the
system has had enough time to approach its final state, i.e. that the dynamical attractor
for the given initial conditions has been reached. Slow relaxation is indeed known for some
dynamical systems (see, e.g., [12]). The properties of the transients of GCM have not yet
been sufficiently investigated. The aim of the present letter is to systematically study the
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Fig. 1 – Average time required to approach an attractor as a function of the control parameter a
for the coupling strength ε = 0.3 in a system of size N = 100. Averages over 100 different initial
conditions are performed. Vertical bars indicate minimum and maximum values of the transient time.
Inset: Transient length as a function of the system size. From top to bottom: a = 1.55, 1.63, 1.66,
and 1.8.

Fig. 2 – Time dependence of the number of clusters in a system of size N = 100 for the coupling
intensity ε = 0.3 at a = 1.6 (main plot) and a = 1.8 (inset), and 30 different initial conditions in each
case.

transient behaviour of GCM, described by eq. (1). Our principal result is that inside the
whole parameter region, corresponding to partially ordered (“glassy”) phases of type II, only
few-cluster attractors are observed after very long transients. This result holds also when
weak noises are added. It contradicts to what has been previously reported by Kaneko [13].

We performed long runs of up to T = 107 iterations and recorded the time at which
the final minimum value of K was reached in the parameter region corresponding to the
partially ordered phase of type II. To this end, the partition (K; N1 ≥ N2 ≥ . . . ≥ NK) was
determined every ∆t = 25–50 time steps. Double precision real numbers were used in these
computations, ensuring the absolute precision of 10−16. Two elements were taken to belong to
the same cluster only if they had exactly the same state within the double computer precision,
i.e. if |xi(t) − xj(t)| < 10−16.

The computed average transient length for ε = 0.3 as a function of a is shown in fig. 1. We
see that the transients may extend up to tens of thousands and even millions of time steps.
They become especially long near a = 1.6. Previous numerical studies [1, 2, 11] were limited
to much shorter evolution times (up to 104 iterations) and therefore some of the behaviour
observed in these studies essentially corresponded to transients. This becomes clear if we
compare our fig. 1 with fig. 9 in ref. [2]: A strong increase in the mean number of clusters K
was reported exactly where the transient length greatly increases (exceeding 3000 time steps).
Our investigation reveals that, after long transients, only attractors with K ≤ 2 are typically
found for a < 1.65, and only attractors with K ≤ 6 are observed for 1.65 < a ≤ 2. Similar
results are also obtained in our calculations for ε = 0.25, 0.35, and 0.4.

The time dependence of the number of clusters K(t) at ε = 0.3 for 30 different initial
conditions is shown in fig. 2 for a = 1.6 (main plot) and a = 1.8 (inset). For a = 1.6, the
number of clusters is indeed large during the initial evolution, and comparable with the total
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Fig. 3 – Exponential relaxation to the asymptotic state for the coupling intensity ε = 0.3 and three
different values of the control parameter a. The slope of the curves (from top to bottom) is β =
1.1 × 10−4, 2.4 × 10−4 and 5.4 × 10−4, and errors are of order 10−7. The system size is N = 100.
Averaging over M = 103 initial conditions is performed.

Fig. 4 – Exponential relaxation in GCM added with noise of amplitude η = 10−10 (other parameters
as in fig. 3). The precision is δ = η1/2. The slope of the curves (from top to bottom) is β =
8 × 10−5, 2 × 10−4 and 5 × 10−4.

size of the system (N = 100). Later on the number of clusters is slowly decreasing and
eventually only attractors with K = 2 (but different partitions N1, N2) are found at this
value of the parameter a. The system evolution at a = 1.8 is essentially similar, though it is
characterized by a much faster convergence to the final states (note the difference by almost
two orders of magnitude in the time scales in these two plots). Another difference is that
for a = 1.8 the final states with various cluster numbers K = 2, 3 and 4 are observed. By
averaging over a large number of initial conditions, the time dependence for the relaxation of
the mean cluster number K(t) to its asymptotic value K has been obtained. Figure 3 shows
in the logarithmic scale the time dependence of the quantity δK = K(t) − K for ε = 0.3 and
a = 1.6. We clearly see that the relaxation is exponential, δK ∝ exp[−βt].

We have further analysed how the mean transient time τ = β−1 depended on the system
size N . The explored interval of system sizes was 24 ≤ N ≤ 212; we have used several values
of a and fixed the coupling strength at ε = 0.3. We did not find any strong variation of τ with
N , i.e. the order of magnitude of τ did not depend on the system size. The transient length
depicted in fig. 1 is characteristic for almost three decades of variation in the system size N ,
as depicted in the inset of fig. 1.

The presence of very long transients indicates that the system may be sensitive to the
application of noise. Indeed, for the so-called Milnor attractors even a tiny perturbation
would suffice to destabilize the asymptotic state [14]. The existence of Milnor attractors has
been discussed both for the partially ordered phase of type II [11] and for the intermittent
phase [10]. To analyze the effect of weak random perturbations, we have modified eq. (1) by
adding a noise term η ri(t). We have chosen a small noise intensity η = 10−10; independent
random numbers ri(t) ∈ (−1, 1) are drawn anew from a uniform distribution for each element
and at each time step. Noise prevents the spurious synchronization of elements in the system:
If the states of two maps i and j are equal (with computer precision) at time t, they will
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Fig. 5 – Fraction f of initial conditions leading to a chaotic attractor for GCM with and without noise.
The parameters are ε = 0.3 and N = 100 and we have averaged over M = 103 initial conditions.

Fig. 6 – Average transient length to fall into an attractor in the intermittent phase. The coupling
strength is ε = 0.1 and the system has size N = 100. Averages over 100 initial conditions were
performed (small circles) while vertical lines link minimum and maximum values for each value of a.
At a � 1.66 the turbulent phase sets in.

follow identical trajectories for all t′ > t in a pure deterministic system. When noise is added,
spurious attractors are not attained and only robust attractors should be detected.

In the presence of noise the states of elements in a cluster cannot be identical. To define
a cluster, we have to choose a certain finite precision δ and say that elements i and j belong
to the same cluster at time t if |xi(t) − xj(t)| < δ (cf. the respective definition for the case
of randomly coupled maps [4]). We have found that the application of weak noise does not
qualitatively influence the above-described evolution. Figure 4 shows in logarithmic scale
the mean number K(t) of clusters as function of time when weak noise is present (all other
parameters are the same as in fig. 3). The system still evolves towards final distributions
characterized by a few large clusters. Typically, a slower convergence to the limit value K= 2
was observed when the noise was acting. Only in a very narrow domain 1.60 ≤ a ≤ 1.62 did
noise seem to prevent convergence to a few-cluster attractor. Note that this area coincides with
the maximum transient length in the deterministic case, and also with the boundary at which
the single synchronous cluster becomes unstable (it is also known that the unstabilization of
the coherent phase proceeds through power law divergence of the transient lenght [4]).

The dynamics corresponding to a particular cluster partition in our simulations was either
periodic or (intrinsically) chaotic. To detect intrinsically chaotic dynamics, local Lyapunov
exponents were examined. After a fixed transient of length T = 107 we numerically calculated
the local Lyapunov exponent

λm(ε, a) =
1

Nt̃

T+t̃∑

t=T

N∑

j=1

log |f ′(xj(t))| (2)

corresponding to the trajectories xj(t) of elements j for the given initial condition m and
parameters ε and a. The averaging time was always t̃ = 104. Positive exponents correspond
to chaotic dynamics. The same procedure was used both in the presence and in the absence
of the noise.
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When noise is acting, it may, in principle, induce transitions from one cluster partition
to another. Our numerical investigations show, however, that such transitions actually take
place in the presence of very weak noises only if the dynamics corresponding to a particular
cluster partition is intrinsically chaotic. This observation leads us to a conjecture that Milnor
attractors in GCM are, perhaps, only generated by cluster partitions with intrinsically chaotic
dynamics. Cluster partitions with periodic attractors are stable against a finite amount of
perturbation, while the system leaves with certainty a partition with a chaotic attractor in a
finite time when noise is present (see also [10]).

Interestingly, the addition of noise favors the attainement of periodic attractors. Figure 5
shows the fraction f of initial conditions leading to a cluster partition with (intrinsically)
chaotic dynamics with and without noise for the coupling intensity ε = 0.3, as identified by
means of (2). We see that this fraction is strongly reduced in the presence of noise around
the parameter value a = 1.61. To explain this, suppose that the system has approached a
cluster partition with chaotic dynamics. Given that any such partition is destabilized even
by weak noise, we expect that elements would spend only some time near this attractor, but
then one of them would change its cluster affiliation and a new cluster partition would thus
be produced. As long as this new partition is also chaotic, the system again easily escapes
and the same procedure repeats until a much more stable partition with periodic dynamics is
found. This simple argument predicts that, under the action of noise, the system would wander
between chaotic Milnor attractors until it eventually finds a robust periodic attractor. If this
is indeed so, chaotic attractors would always represent mere transients for sufficiently weak
noises. Nonetheless, to test such hypothesis much longer iterations are apparently needed.

Thus, our numerical analysis of globally coupled logistic maps has shown that the collective
dynamics of this system in the partially ordered phase of type II is characterized by the
presence of very long transients. The asymptotic states of the system in this parameter region
are, however, the same as in the ordered phase and include only a small number of synchronous
clusters. This conclusion holds even when a small noise, eliminating spurious attractors, is
introduced. We have also performed the analysis of dynamical transients in the intermittent
phase, i.e. at the interface between the ordered and the turbulent phases, and have found
that a monotonous increase in the transient length preceeds the onset of the turbulent phase
(see fig. 6). In contrast to the partially ordered phase of type II, the coexistence of few- and
many-cluster attractors is still observed in this region after the relaxation time has elapsed.
These results are important for the general classification of dynamical behaviour in GCM.
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