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Abstract. – We compute distributions of overlaps between replicas and discuss replica sym-
metry breaking in a large dynamical system formed by globally coupled logistic maps under
partial synchronization conditions. By computing and analyzing three-replica overlap distribu-
tions, the ultrametric hierarchical organization of attractors in this system is tested.

Numerical simulations of various dynamical systems, such as arrays of locally coupled
chaotic maps [1], the complex Ginzburg-Landau equation [2], and ensembles of phase oscil-
lators with frustrated interactions [3], show complex collective behaviour resembling that of
a spin glass. Globally coupled logistic maps (GCLM) represent the most extensively investi-
gated example of a system with such glass-like behaviour. As shown by Kaneko [4, 5], in the
regime of dynamical clustering GCLM are characterized by the coexistence of many different
dynamical attractors with fractal attraction basins. It has been found [6] that inside the pa-
rameter region of clustering the temporal averages do not coincide in the long-time limit with
the ensemble averages and therefore the dynamics of GCLM is non-ergodic (see also [5]).
The theoretical description and analysis of equilibrium spin glasses are based on the notion

of replicas and the concept of replica-symmetry breaking [7]. This property has been proven
for the mean-field Sherrington-Kirkpatrick (SK) model [8, 9], and confirmed by numerical
studies [10, 11] of this and other models of equilibrium spin glasses. Such behaviour was also
found in equilibrium physical systems in the absence of quenched disorder [12]. A related
concept is that of ultrametric hierarchical organization of replicas [13]. The ultrametricity
has been analytically [8] and numerically [14] shown for the SK model.
Though replicas were originally introduced as formal mathematical constructions, they

can be interpreted as corresponding to different statistical realizations of the same equilibrium
system [9], allowing to extend the concept of replica to systems far from thermal equilibrium.
Recently, the glass-like kinetic properties of folding proteins were discussed and different
dynamical trajectories of the same system were viewed as its various replicas [15] (see also the
model [3] of coupled oscillators and its analysis [16]).
In this letter we introduce an analogous replica description for globally coupled logistic

maps. The distributions of overlaps for this system are numerically determined in two differ-
ent parameter regions, where “glassy” behaviour was previously reported by Kaneko [4] and
Vulpiani et al. [6]. Three-replica overlap distributions are also computed and investigated to
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test the ultrametric properties of GCLM in these parameter regions. The obtained data is
used to discuss differences and similarities between GCLM and equilibrium glasses.
The system of globally coupled logistic maps is described by the set of equations [4]

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

N

N∑

j=1

f(xj(t)) , (1)

where f(x) = 1 − ax2, the parameter ε specifies the coupling strength, i = 1, 2, ..., N and
N is the system size. The control parameter a of a logistic map shall be chosen in such
a way that the dynamics of an individual map is chaotic. When ε is sufficiently high, the
motion of all maps becomes synchronous while remaining chaotic. The transition to full
chaotic synchronization is preceded by a broad interval of coupling strengths where dynamical
clustering is observed [4]. In this interval, the system builds a number of coherent clusters.
Depending on the initial condition, the system can evolve to different cluster partitions at the
same parameter values. A partition is specified by the total number K of clusters and the
numbers Nk of elements in each of them (k = 1, . . . ,K). The partitions differ not only in the
number of clusters, but also in their relative sizes. Every cluster partition (each corresponding
to an attractor of this system) has its own dynamics, which may be chaotic, quasiperiodic or
periodic.
Starting from a random initial condition, in numerical simulations we let the system (1)

evolve until it reaches the final attractor. The transient time t0 depends strongly on the
parameters ε and a and varies between 102 and 106 [17, 18]. In all our simulations, we have
checked that the attractor at time t = t0 was the same present at time t′ = 2t0. Once the
dynamical stationary situation is reached, we compute the clustering properties of this final
state, i.e. determine the elements Nk belonging to each of the clusters k = 1, . . . ,K. We
use an exact clustering condition, i.e. two elements belong to the same cluster if they have
exactly the same states down to the double computer precision. To avoid degeneracy due to
the original arbitrary labelling of elements, we reorder them by assigning labels x1 to xN1 to
those in the largest cluster, xN1+1 to xN2 to maps in the second largest cluster, and so on.
Replicas represent dynamic realizations of this system corresponding to different initial

conditions. Thus, a replica is a certain orbit {xi(t)} of the entire ensemble. To compare
replicas, it is convenient to transform them to binary sequences. At any discrete time t for any
element i we assign a binary number σi(t), such that σi(t) = 1, if xi(t) ≥ x∗ and σi(t) = −1,
if xi(t) < x∗, where x∗ = (1/2a) (−1 + √

1 + 4a) is the fixed point of a single logistic map.
Hence, any replica α is encoded as a certain “spin-chain” configuration {σ(α)

i (t)}. The overlap
qαβ between two replicas α and β, yielded by two different randomly chosen sets of initial
conditions x(α)(0) and x(β)(0) for the same parameters a and ε, can then be computed as

qαβ =
1

NT

t0+T∑

t=t0

N∑

i=1

σ
(α)
i (t)σ(β)

i (t) . (2)

The time t0 is chosen large enough to assure that the transient is discarded.
Two periodic orbits can be identical up to a certain time lag (i.e. a phase shift). If we

directly apply definition (2), different overlaps depending on the phase shift will be in this
case detected. To eliminate this effect, we always additionally maximize qαβ with respect to
possible phase shifts [19]. In the cases here investigated, it was enough to consider phase shifts
in the range from 2 to 32, since higher periods were practically absent. For chaotic trajectories
such optimization is not actually needed if T is long enough. Using the above definition, we
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Fig. 1 – Normalized overlap distributions P (q) for a = 1.55, ε = 0.1, and system sizes as shown in
the legend. The full peak height for N = 8192 at q = 1 is 34.

Fig. 2 – Distribution of cluster sizes for the same parameters as before.

have found that in the case of one-band chaos (which appears for the individual map near
a∗ = 1.56), the binary sequence for a chaotic replica changes sign in an uncorrelated fashion
with respect to a second replica (be this periodic or chaotic) and always returns an almost zero
value of the overlap in the limit of long averaging times T . For two-band chaos and for periodic
orbits, the overlap (2) is not vanishing and is well defined, provided the maximization with
respect to phase shifts is performed for the periodic orbits. It should be noted that periodic
dynamics is more typical in the clustering regime of GCLM than chaotic dynamics, which is
found only inside relatively narrow regions of the parameter space. Quasiperiodic trajectories
are rare and were not observed for the considered parameters.
To analyze the distribution of overlaps, their histograms were constructed. The interval

[0, 1] of possible overlaps q was divided into equal boxes of width 0.004 and the numbers
of overlaps qαβ between randomly generated pairs (α, β) of replicas lying in different boxes
have been counted. We performed averages over 2 × 104 replicas. As will be seen below,
the statistical properties of GCLM may strongly depend on the size of the system and very
large systems should therefore be considered. Systems with sizes up to N = 8192 have been
analyzed. Since long computations are needed, so far we have calculated the histograms P (q)
for different system sizes only in several points in the parameter plane (a, ε), focusing our
attention on the regions where a glass-like behaviour was previously suggested.
Figure 1 shows normalized histograms P (q) computed for a = 1.55, ε = 0.1, and several

different system sizes. This choice of parameters corresponds to the “regular glass regime”
reported by Vulpiani et al. [6]. We have seen that all orbits were periodic with period p = 4.
Despite the same low periodicity, orbits with greatly different degrees of similarity can be
found here (fig. 1). For N ≤ 2048 the possible overlaps q between replicas are covering the
whole interval from 0 to 1, with a depletion in the middle part. As the size N increases,
the central depletion gets broader and at N = 8192 the distribution P (q) approaches the
form of two peaks, located close to q = 0 and q = 1. Thus, as the system gets larger, the
orbits correponding to different cluster partitions become more similar. This transformation
is accompanied by a gradual change in the statistical properties of observed cluster partitions.
Figure 2 shows the corresponding histograms of distributions of relative cluster sizes Nk/N
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Fig. 3 – Distributions P (q) for ε = 0.3, N = 512 and (a) a = 1.6, (b) a = 1.7, (c) a = 1.8, (d) a = 1.9.

Fig. 4 – Dependence of the overlap distribution on the system size for a = 1.9, ε = 0.3, and sizes as
shown in the legend.

averaged over 2 × 104 randomly generated initial conditions. For the smaller systems (N <
512), clusters of many different sizes can often be found, so that the cluster distribution has
a broad central maximum. As N increases, the shape of the distribution is changed and
two narrow sharp peaks corresponding to two different preferred cluster sizes emerge. Hence,
cluster partitions generated by the system become more similar in the large-size limit.
The parameters chosen in fig. 1 lie close to the transition from dynamical clustering to the

“turbulent” regime where the dynamical states of individual maps are no longer synchronized.
Another interesting region of the phase diagram corresponds to the transition from dynamical
clustering to the coherent regime with full global synchronization. Glassy states (i.e. a
number of clusters of the same order as the size N of the system) have originally been reported
there (see [4]). Recent studies [17, 18] show that, after very long transients, the system still
approaches states with just few clusters in this parameter region. Nonetheless, the presence
of such long transients indicates that the statistical properties of the system may be special
here.
Figure 3 displays distributions P (q) computed for a system of size N = 512 with coupling

strength ε = 0.3 at four values of the control parameter a. The first three points (a = 1.6,
1.7 and 1.8) lie inside the “glassy” region of the diagram, the last point with a = 1.9 is in
the region of “ordered” states with few clusters and short transients. We have checked that,
after sufficiently long transients, partitions with two to six clusters could be found at all these
points, though the two-cluster partitions were the most frequent. The overlap distribution
always consists of two peaks, close to q = 0 and q = 1. Examining individual orbits, it is
found that peaks near q = 0 correspond now to chaotic attractors, which gradually disappear
as a increases. The peak due to periodic orbits near q = 1 is relatively broad, so that varying
degrees of similarity are observed. For example, at a = 1.9 the overlap can vary between 0.8
and 1, though all orbits have here the same low period p = 2. The dependence of the overlap
distribution on the system size at a = 1.9 was further investigated (see fig. 4). The overlap
distribution changes only slightly in the interval of sizes 64 ≤ N ≤ 2048. At N = 2048
the distribution P (q) contains weak oscillations which cannot be attributed to the lack of
statistical averaging. At N = 8192 the small peak seen in fig. 5d near q = 0 disappears, and
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P (q) becomes stronger and narrower near q = 1. Again, a significant change in the statistical
properties of GCLM is found as the system size is increased.
We have analyzed the hierarchical organization of replicas in GCLM. Generally, the ul-

trametric distance d(A,B) between two elements A and B in a hierarchy is determined by
the number of steps one should go up in the hierarchy to find a common ancestor of two
elements A and B. If any three elements A, B and C belong to a hierarchy, the inequality
d(A,C) ≤ max{d(A,B), d(B,C)} holds. As a consequence, the two maximal distances be-
tween elements in any triad must always be equal. If overlaps qαβ between any two replicas
α and β are uniquely determined by the ultrametric distance d(α, β) between the respec-
tive states, the overlaps between any three replicas α, β and γ must satisfy the relationship
qαγ ≥ min{qαβ , qαγ}, implying that the two minimal overlaps in any triad of replicas are
always equal [13]. To numerically test this condition, various triads of replicas must be gen-
erated and the distribution H(∆q) over the differences between the two minimal overlaps
for any triad should be computed. If the distribution H(∆q) is close to a delta-function at
∆q = 0, the system is approximately ultrametric (see, e.g., [11, 14]).
Though replica-symmetry breaking is a necessary condition for nontrivial overlap distribu-

tions, it does not yet imply exact ultrametricity. Possible deviations from strict ultrametricity
have been discussed for spin glasses [13]. Recently, Parisi and Ricci-Tersenghi [20] have shown
that exact ultrametricity can only hold under the conditions of “stochastic stability” (i.e. that
each replica is in a certain sense equivalent to the others) and of “separability” (i.e. that all
the mutual information about a pair of equilibrium configurations is already encoded in their
overlap). On the other hand, if replica symmetry is not violated and overlaps between all
replicas are identical, the probability distribution H(∆q) is trivially a delta-function of ∆q.
To test ultrametricity in the dynamical clustering regime of GCLM, we followed the parallel

evolution of many triads of replicas α, β and γ and calculated overlaps between each pair.
As the initial check, we have verified that the overlaps q determined according to eq. (2)
can indeed be used to define distances between replicas. If d(α, β), d(β, γ) and d(α, γ) are the
distances corresponding to a triad α, β and γ, they must always satisfy the geometrical triangle
inequality d(α, γ) ≤ d(α, β) + d(β, γ). Assuming that the distance d(α, β) is a (monotonously
decreasing) function of the overlap qαβ between replicas, this implies that the overlaps should
satisfy the condition qαγ ≥ qαβ+qβγ in order that they can be meaningfully used to define the
distances. We have numerically checked that the latter triangle inequality is indeed satisfied
for the used overlaps with the distance d(α, β) = 1− qαβ .
The numerical data was used to construct the probability distribution H(∆q) over differ-

ences between two minimal overlaps in a triad (fig. 5 displays H(∆q) for parameters as in
fig. 1). All such distributions have a peak at ∆q = 0 which grows and becomes more narrow
as N increases. The shape and the size dependence of the distributions H(∆q) in fig. 5 are
strongly resembling the respective figures yielded by numerical simulations of equilibrium spin
glasses at finite sizes [11,14] and interpreted as a proof of ultrametricity in these systems. Of
course, it should be remembered that, in contrast to the SK model, the overlaps in GCLM are
not uniformly distributed. However, even for the largest system size N = 8192 the overlap
distribution in fig. 1 includes both small and large overlaps, and the presence of a single
narrow peak at ∆q = 0 for N = 8192 in fig. 5 cannot be simply explained by saying that
all overlaps are already close one to another. Figure 6 shows the functions H(∆q) that were
computed for a system of size N = 512 and parameters as in fig. 3. The narrow peaks at
∆q = 0 are again clearly seen. This shape of the distribution is retained even at a = 1.7 and
a = 1.8, when the respective overlap distributions (fig. 3b and c) have two separate peaks.
Hence, we conclude that in the considered dynamical regimes the attractors of GCLM reveal
some kind of hierarchical organization, though exact ultrametricity is not detected here.
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Fig. 5 – Distributions H(∆q) for systems of different sizes, other parameters as in fig. 1. The full
height of the peak for N = 8192 at q = 0 is 119.

Fig. 6 – Distributions H(∆q) for the same parameters as in fig. 3 (a-d).

The aim of the present letter was to introduce the concepts of replicas and overlap distri-
butions for GCLM. Only the first results of numerical investigations using these notions are
reported here. In our opinion, the computation of overlaps between replicas offers a new tool
for the exploration of clustering in dynamical systems. We have found that in some param-
eter regions depending on initial conditions the system of globally coupled logistic maps can
generate a great variety of orbits, characterized by mutual overlaps distributed over a wide
range of values. Though an ideal hierarchical structure was not detected, our study suggests
that some form of hierarchical organization is intrinsic for this system.
The results of our preliminary investigation indicate several directions for future research.

Firstly, numerical simulations should be extended to systems of much larger sizes. Indeed, our
simulations show that the collective behaviour of GCLM in the dynamical clustering regime
undergoes a qualitative change when the size N ≈ 5000 is reached. If the trend seen in
figs. 1 and 4 is continued and the overlap distribution approaches a delta-function for the
larger systems, this would mean that all replicas become statistically identical for N → ∞
and thus the replica symmetry is recovered in this limit. Furthermore, the influence of noise
on the glass properties of GCLM should be investigated. The introduction of noise can be
important for two reasons. When equations of GCLM are iterated using a digital computer,
round-off errors may lead to spurious synchronization and clustering, representing numerical
artifacts. As suggested by Kaneko [21], to eliminate such undesired behaviour extremely weak
noise should be added. Our previous analysis [17] has shown that, though spurious clustering
can take place for chaotic attractors, it is never observed for periodic orbits which are more
robust against perturbations. Since most of the distributions in this letter were constructed
for parameter values where cluster partitions corresponded to different periodic orbits, we
expect that they would not be affected by the introduction of weak noises. However, some
results referring to the regimes with chaotic dynamics can be modified when weak noises are
incorporated. The second effect, expected for relatively strong noise, is that it would smear
the complex attractor structure of GCLM and restore the replica symmetry for any size of
the system. Indeed, in our recent publication [22] we have seen that the dependence on initial
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conditions disappears when sufficiently strong additive or multiplicative noise is applied to
GCLM. The role of such strong noise would thus be similar to that of thermal fluctuations in
equilibrium spin glasses. Finally, a systematic analysis of replica overlaps should be performed
at many parameter points in different parts of the phase diagram of GCLM in order to obtain
a full statistical description of the glass properties of this important dynamical system.
Though our present study has been performed for a particular model of GCLM, we expect

that similar behaviour will be found in other large dynamical systems formed by globally
coupled chaotic elements. Indeed, the collective behaviour of globally coupled Rössler os-
cillators [23] and ensembles of cross-coupled neural networks [24] strongly resembles that of
GCLM. Recent investigations on mutual synchronization in populations of coupled chaotic
electrochemical oscillators [25] provide the experimental evidence of dynamical clustering be-
haviour and open the possibility of an experimental test of our results.
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