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Long-range transport and universality classes
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Abstract. – Dispersal mechanisms play a main role in the dynamics of infection spread.
Recent experimental results with in vitro infections of foot-and-mouth disease virus reveal that
the time needed for the virus to kill a cellular monolayer depends qualitatively on the number of
viral particles required to initiate infection in a susceptible cell. A two-dimensional susceptible-
infected-removed (SIR) model based on the experimental setting agrees with the observations
only when viral particles are subject to long-range transport. Numerical and analytical results
show that this long-range transport plays a role when a single particle causes infection, while
it is inefficient when complementation between two or more particles is necessary.

The knowledge of the mechanisms involved in disease spread determines our ability to
control the dynamics of epidemics in natural populations [1,2]. Decades of study in this field
show that the fate of an exposed population depends on many factors, among others the way in
which the pathogen is transmitted [3], the connectivity patterns among individuals [4], or the
dimensionality of the physical space where propagation occurs [5]. The specific environment
where infection originates and spreads, together with the transmission mechanism and the
characteristics of the host, define different scenarios where epidemics outbreaks occur with
broadly variable probability [6].

Since real populations rarely behave as a well-mixed system or as a purely diffusive one,
the role played by long-range dispersal mechanisms (added to local diffusion) in the develop-
ment of epidemics has been an issue of study [3, 7–10]. It is known that long-range dispersal
changes the properties of the process qualitatively [11, 12]. In this letter, we present experi-
mental, numerical, and analytical results concerning the spread of a viral infection on a cellular
monolayer. The in vitro system shares many features with models of disease spread. The use
of two qualitatively different viral forms demonstrates indirectly that, as expected, short- and
long-range transport belong to different universality classes.

Complementation refers to the interaction between virus gene products or gene products
and genomes of two different parental viruses coinfecting the same cell: one of the viruses pro-
vides a functional gene product for another virus that lacks that function. This mechanism
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Fig. 1 – Dependence of the time T required to kill a cellular monolayer of baby hamster kidney cells on
the initial number of viral particles I0. After 260 passages at high MOI, the segmented form C-S8p260
is selected (see main text). This transition can be reverted with passages at low MOI, such that the
form C-S8p260p3d with a complete genome is the major form after only three additional passages
of C-S8p260 at low MOI [16]. The continuous curves are least-squares fit to the data. Regression
coefficients are β = −0.46(5), b = 10.7(8), and r = −0.96 for C-S8p260; α = −2.3(2), a = 52(3), and
r = −0.98 for C-S8p260p3d.

influences evolutionary features of viral populations [13–15]. It was recently observed that
under serial passages carried out at high multiplicity of infection (MOI: number of infectious
particles per cell), a wild-type variant of the foot-and-mouth disease virus (FMDV) sponta-
neously generated two forms with incomplete genomes, each encapsidated in a different viral
particle [16]. These two types of virions are defective and infection can only occur by com-
plementation between them, that is only when at least one particle of each type enters a cell.

The relative performance of wild-type (w, unsegmented form) vs. defective (s, segmented
form) virus can be quantified through cell killing assays, an experimental protocol used to
quantify virulence. A monolayer of susceptible cells which occupy fixed positions on a surface
is infected with a controlled number of viral particles. The virus replicates its genetic material
inside each infected cell and, once the infection cycle is completed, the cell is lysed (killed).
Thousands of new viral particles are then released to a liquid medium that covers the cellular
monolayer and allows them to diffuse freely. For the virus used, about one in 104 particles
produced is infectious. From another viewpoint, this translates into a typical time to infect
a cell notably larger than that required to diffuse on the plate. As a consequence, while cells
adjacent to recently lysed ones are infected almost with certainty, distant cells can be infected
with a (low) near constant probability(1). The cycle repeats when new susceptible cells are
infected. The killing process ends at time T , when the N cells in the monolayer have been
lysed by the virus. The relation between T and the initial amount of infecting viral particles
c0 quantifies the ability of the virus to produce and spread infections in that environment.
The total number of viral particles initially added to the system, which can be experimentally
measured, is I0 � 104c0 (see fig. 1).

(1)The time required for a viral particle to adsorb to the cell and penetrate through the membrane is about
30 to 60 minutes, and the time to complete an infectious cycle inside the cell and release the progeny ranges
from 2 to 4 hours. Through pure diffusion, a viral particle (of 30 nm diameter) requires 1 second to cover
the distance equivalent to one cell (10 µm; the experiments where performed at a temperature of 310 K). The
presence of chemical gradients and the spreading of particles caused when the cell lyses add to homogeneize
the liquid layer.
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In the assays carried out with FMDV, a logarithmic dependence of the form T ∝ α ln I0+a
is observed for wild-type particles, while the case of segmented genomes that require comple-
mentation yields ln T ∝ β ln I0 + b (fig. 1). Since the experimental setting is exactly the same
for both forms of the virus, the qualitatively different behaviors can only be ascribed to the
requirement of complementation between particles to cause infection.

From the viewpoint of epidemics, the infection process can be modeled as a SIR model
with an absorbing state when all of the individuals are in the R state. At time t = 0, n(0) cells
become infected. If we assume that there is an equal number of particles belonging to each
of m classes, and that infection occurs only when at least one particle of each class infects a
cell, n(0) is given by

n(0) = N (1 − exp[−c0/(mN)])m
, (1)

where N is the total number of cells to be killed. The number of viral particles of each type
infecting a cell follows a Poisson distribution of average c0/(mN), such that m = 1 and 2 stand
for w and s particles, respectively. From now on, we use n(0) to describe the process(2). In the
experimental assays, either all particles were wild-type or the two segmented, complementary
forms were simultaneously present, without w particles.

The infection cycle in a cell ends when enough viral particles have been produced such that
the cell is lysed and k � 1 viral particles effectively infect new cells. If a particle belonging
to the wild type enters a susceptible cell, the cell becomes immediately infected. However,
if the particle contains a defective genome and requires complementation, infection occurs
only when a second particle of the complementary type enters the same cell. The infection
proceeds until a time t = T , at which all cells in the monolayer are killed

n(T ) = N , (2)

where n(t) is the number of cells killed at time t. We are interested in the relation between T
and n(0), the latter indirectly derived from direct measures of I0.

In the framework of the SIR model, the transition S → I occurs with rates pw(t) and ps(t)
that depend on the viral form infecting the cell (w or s), on the properties of the environment,
and on time, while the transition I → R occurs with probability one when the infection cycle
ends and the cell is lysed by the virus.

Mean-field analysis. – Infection spread by wild-type and defective particles can be first
studied in a simple situation of perfect mixing of particles. In this case,

pw(t) = kw
n(t) − n(t − 1)

N − n(t)
,

ps(t) =
(

ks

2

)2 (
n(t) − n(t − 1)

N − n(t)

)2

, (3)

where N−n(t) is the amount of cells in the S state at time t, and the number of viral particles
produced is kw,s times the number of cells lysed at time t, and where the subindexes stand
for w and s particles. Note that the difference n(t)−n(t− 1) corresponds to the derivative at
time t − 1, so eqs. (3) can be viewed as conservation equations. The threshold for spreading
of the infection results from the condition that at least one cell is killed at each time step.
For w particles the condition is trivial and simply implies that the basic reproductive number

(2)n(0) is called number of plaque forming units or PFU by the virological community. It is estimated by
counting of lytic plaques in the experiments; I0 � 104c0 is quantified through real-time polymerase chain
reaction.
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kw has to be larger than one (one assumes n(0) ≥ 1). For s particles the condition n(t) ≥ 1
for all t is particularly demanding at the initial time steps due to the high dilution of the
particles. If n(1) > 1, for n(0) given, the infection will spread, since n(t) is non-decreasing.
This imposes a strong limit on the production of viruses,

ks ≥ 2
√

N − 1 , (4)

and sets a limit on the initial number of viral particles as well, c0 ≥ ks for n(0) to be larger
than one. The conditions on c0 and kw,s represent the threshold conditions for invasion and
endemicity of the infection, respectively.

In this scenario, the kinetics of the infection follows:

n(t + 1) = n(t) + pw,s(N − n(t)) (5)

with pw,s given in eq. (3) and the initial condition n(0) and n(1) = (1+kwn(0)). Equation (5)
is easily solvable for w particles, and condition (2) yields a dependence of the form Tw ∝
− ln n(0). For s particles, the kinetics can be solved in a time-continuous approximation,
described by the differential equation

dn(t)
dt

+
1
2

d2n(t)
dt2

=
k2

s

4(N − n(t))

(
dn(t)

dt

)2

. (6)

This equation has a solution of the form t = c2− ln[2(n(t)−N)1+k2
s/2−c1(1+k2

s/2)]/2, where
c1 and c2 are determined from n(0) and n′(0) = n(0)/

√
2. Applying eq. (2), the relation

between the time of complete cell killing and the initial number of viral particles takes again
the functional form Ts ∝ − ln n(0).

Hence, this mean-field approximation yields the same functional form for the dependence
between T and n(0) in the wild-type and in the segmented genome cases, and thus does not
capture the qualitative difference observed empirically. Moreover, it sets a strong limit on the
spreading of infection for s particles, since ks turns out to depend on the system size N .

Two-dimensional model. – Let us now consider the SIR process on a two-dimensional
lattice. Each cell is placed on a site of the lattice, and the particles released upon lysis diffuse
to the eight nearest neighbors. We consider a long-range transport mechanism as well. This
mimics the fact that the cellular monolayer is covered by a liquid medium that transports
a small fraction of particles far from their origination site. In our model, a viral particle
can infect a randomly chosen susceptible cell anywhere in the two-dimensional lattice with
a probability q � 1. Some features of this kind of dispersal have been studied in previous
works [7], and the deep analogy between long-range transport and small-world properties in
systems of mobile individuals has been put forward [9, 11].

We consider first the growth of a single infectious focus (n(0) = 1), with q = 0. After
a few cycles where the number of removed cells increases exponentially, the radial growth of
the lytic plaque saturates and the number of newly infected cells becomes proportional to
the perimeter of the plaque. Using a space-continuous approximation, we expect a kinetics
of the form n(t + 1) � n(t) + 2π

√
n(t)/π. In this regime, the number of lysed cells grows

asymptotically as the square of time, n(t) � πt2, and does not depend qualitatively on the
type of particles. If many independent cells initiate the infection, then N/n(0) cells have to
be killed per lytic plaque, such that T is given by

2 ln T � − ln n(0) + ln(N/π) . (7)
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Fig. 2 – Main plot: kinetics of growth of a single lytic plaque in the two-dimensional model with
diffusion to nearest neighbors. After a few infection cycles, the number n(t) of lysed cells grows
proportionally to t2 (the bold solid line has slope 2), irrespectively of the form of the virus. The
basic reproductive number corresponding to each curve and case is shown in the legend. Insert: time
TN/2 required to kill N/2 = 5× 105 cells in a square lattice for cases w and s (open and solid circles,
respectively, kw = 5, ks = 10). The dot-dashed curve is 2 ln T � − ln n(0) + ln(N/(2π)), which works
better for larger plaques (small n(0)), since their shape is closer to circular.

We represent in fig. 2 the simulation time TN/2 required to kill N/2 cells (this is to minimize
finite-size effects due to plaque merging) together with the corresponding prediction. w and s
particles behave similarly, so single-plaque growth, dominated by short-range dispersal, cannot
account for the qualitative differences observed in the experiments.

The situation changes when q �= 0. Long-range jumps represent directed, random links
shortcutting the transmission of the disease between an arbitrary pair of sites. Suppose that,
initially, a single cell is killed, and originates a lytic plaque which grows as n(t) � πt2.
This proceeds until a characteristic time t1 = (kπq)−1/2 when, on average, one of the newly
generated viral particles infects a randomly chosen cell anywhere in the monolayer. This
second plaque grows as n′(t) � π(t− t1)2. In general, the total number of cells lysed through
this procedure is

n(t) � π
k−1∑
i=0

(tk − ti)2 , (8)

and the discrete times tk at which the k-th plaque starts to grow are implicitly defined through
the equation

t21 =
k−1∑
i=0

[
(tk − ti)2 − (tk−1 − ti)2

]
. (9)

If we consider the new variable τk = (tk − tk−1)/t1, a solution of the form kτk = c+ εk−1 + εk,
with c = 1/

√
2 and ε0 = c/2 satisfies eq. (9). In the original variables tk, this yields

tk � t1

(
1√
2

(γ + ln k) + B − C

k2

)
, (10)

where γ = 0.5772 . . . is Euler’s constant, B = 0.3124 . . ., and C = 0.0337 . . .. We first calculate
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Fig. 3 – Time to complete cell killing for w and s particles when q �= 0. The qualitative dependence
of T on c0 changes in the wild-type case, where long-range dispersal is efficient. This contrasts with
the segmented case, where only local diffusion is relevant to spread the infection. For c0 → ∞ the
curves saturate at T = 1. Compare these results with the experimental observations depicted in fig. 1.
Insert: comparison between the numerical slopes in the w case for several values of q (solid circles)
and the theoretical prediction of eq. (13) (solid line).

the derivative of n(t), corresponding to the number of cells killed at timestep t. From eq. (8),

1
2π

dn(t)
dt

=
k−1∑
i=0

(tk − ti) = t1

k∑
i=1

iτi . (11)

Inverting eq. (10), substituting in eq. (11), and integrating, we obtain the large time behavior
of n(t),

n(t) � πt21 exp
[√

2
(

t

t1
− D

)]
+ O(t−1) , (12)

with D = 0.7205 . . .. As in the case q = 0, we can assume that the infectious process ends once
each initial plaque and the new plaques it has generated through long-range jumps have killed
an average of N/n(0) cells. This condition finally yields the sought dependence of T on n(0),

√
2kπp T � − ln n(0) + ln(kqN) . (13)

Figure 3 compares numerical results for w and s particles and q �= 0 with the theoretical pre-
dictions. The killing time T is represented as a function of the initial number of particles c0,
which is related to n(0) through eq. (1). This allows a direct comparison with the experiments
shown in fig. 1. In particular, for c0 � mN , c0 � n(0) for w particles, and c0 � 2

√
Nn(0)

for s particles, so the funcional dependence is not changed. The fit of experimental data
yields coefficients

√
2kπq between 2 and 3.5 for w particles. This implies that the product

kq ∼ O(10−2). Empirical evidence suggests that k � 10, so the weight of long-range transport
with respect to local diffusion is of order 10−3. However, in the case of segmented genomes,
this value of q implies that long-range coinfection occurs proportionally to q2/N , which is
of order 10−11 for a typical (small) plate with N = 105 cells. In practice, its effects can be
ignored. Infection spread with a segmented virus is thus better described with q = 0, such
that it is expected to follow eq. (7).
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The mean-field description of the SIR process yields a fast spread of infection irrespectively
of the particle type, and fails to capture the qualitative behavior of infection by s particles.
The explicit representation of two-dimensional space slows down the process and changes the
dependence between T and c0. Long-range transport of particles is able to counterbalance this
effect for w particles, where it is efficient, while infection by s particles is not affected by it.
Thus, two-dimensional space plus long-range transport are the minimal ingredients required
to explain the empirical observations.

Viruses with segmented genomes are mostly plant and fungi parasites. Once these organ-
isms are infected, the disease proceeds throught the direct transmission of the pathogen from
cell to cell, such that local diffusion is the main mechanism for infection spreading. Addition-
ally, the transmission of viral infections in plant and fungi usually occurs under high MOI.
These two mechanisms prevent a strong dilution of viral particles, thus conferring a selective
advantage to s particles in those particular environments. In contrast, animal viruses undergo
frequent population bottlenecks when jumping from host to host, thus experiencing states
of high dilution that probably select against viral forms requiring complementation between
particles [17]. The environment where pathogens evolve and the selection pressures they ex-
perience determine their functional characteristics. The examples discussed here highlight the
importance of understanding viral properties and environmental features in order to better
predict and eventually control epidemic diseases.
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