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Abstract – The composition of a quasispecies is completely characterized, in the large population
and long time limit, by the matrix yielding the transition probabilities between different types in
the population. Further, its asymptotic growth rate —i.e. the largest eigenvalue of the transition
matrix— completely determines the winning population in an equilibrium competition. However,
due to the intrinsically heterogeneous nature of quasispecies, out-of-equilibrium fluctuations in
population size might change the expected fate of competition experiments. Using a simple model
for a heterogeneous population we quantify the probability that, after a population bottleneck,
the a priori weaker competitor wins in a competition with a population characterized by a larger
asymptotic growth rate. We analyse the role played by different degrees of neutrality in the
outcome of the process, and demonstrate that lower neutrality favours the weaker competitor in
out-of-equilibrium situations. Our results might shed light on empirical observations in competition
experiments with RNA viruses.

Copyright c© EPLA, 2007

The rate at which mutants appear in a population
determines the amount of diversity that it can maintain. If
the appearance of novelty is frequent enough, coexistence
of different types is the rule, and the selection-mutation
equilibrium population is necessarily heterogeneous. Such
ensembles exist in nature, the most notable example
being RNA viruses. Experimental analysis at the level of
sequence composition [1] and at the level of function [2]
reveal the natural heterogeneity of those organisms.
Mutations affect the genotype and may or may not
change the phenotype of an individual. This dependence
is quantified through the neutrality of a population, which
measures the relation between the microscopic mutation
rate and the effect of those mutations on fitness. Several
theoretical and experimental studies demonstrate that an
increase in mutational robustness might be advantageous,
implying that evolution would favor populations with
higher neutrality [3–7]. In the long evolutionary run, an
optimized population results from a trade-off between
growth rate and robustness to mutations, a property that
is however embedded in the specific form of the transition
matrix, that is, in the probability that one type in the
population produces another one under replication.

In a population holding f = 0, . . . , F different types,
with transition rates Mff ′ between types under replica-
tion dynamics, the asymptotic equilibrium frequency of
each type corresponds to the normalized components of
the right eigenvector of the matrix Mff ′ . The largest
eigenvalue λ yields the asymptotic growth rate of either
type, thus of the population [8,9]. Although there has
been some discussion recently on the relative roles played
by replication ability, mutation rate, and neutrality when
two heterogeneous populations compete, the fate of two
(infinitely large) competing heterogeneous populations is
deterministically set by the asymptotic growth rate. This
property of the ensemble already takes into account, in an
implicit manner, all the relevant properties of the popula-
tion. The winner in the contest is that bearing the largest
dominant eigenvalue λ.

This scenario changes, however, if fluctuations are taken
into account. They might arise from different sources, but
usually translate into varying population sizes. An often
encountered situation is that of population bottlenecks,
where the size of an ensemble is drastically reduced [10,11].
This might be the case in infection transmission, where
one or a few viral particles out of a highly diverse
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population infect a new host. In coinfection of cells by a
few viral particles of different origins, competition might
as well take place inside the cell. During the transient
time required to recover the original population from
a few individuals, the interaction between the growing
populations might induce the extinction of the better
competitor —i.e. of the population with the largest λ.
In another context, it has been shown that demographic
fluctuations in heterogeneous populations might indeed
drive them out of equilibrium and cause extinction despite
the stability of the infinite system [12].

In this letter, we explore the competitive dynamics
of heterogeneous populations of replicators. To this end
we use a phenomenological model devised to mimic the
dynamics of RNA virus populations subjected to expo-
nential growth and stochastic bottleneck events [13,14].
Our goal is to quantify the relative role played by the
asymptotic growth rates and the degree of neutrality in the
out-of-equilibrium competition between two populations
after they have been subjected to a population bottle-
neck. While the degree of neutrality of the best competi-
tor affects only very slightly its probability to win in the
competition, we observe that it pays to decrease neutral-
ity in the population with the smaller growth rate: a rapid
generation of diversity at the initial steps of the compe-
tition increases the probability to cause extinction of the
a priori stronger competitor.

Mean field model for the evolution of a single

quasispecies. – Each individual in a population is char-
acterized by a value f which determines the average
number of offspring per generation for that individual. The
new copies belong to the replicative class f − 1 with prob-
ability p and to class f + 1 with probability q. The replica-
tive ability cannot grow beyond a maximal value f = F .
The parameters p and q modify the phenotypic proper-
ties of the individual, and are interpreted as the visible
part of a microscopic mutation rate. The neutrality of the
genomes in a population is thus defined as

N = 1− q− p, (1)

which exactly corresponds to the fraction of mutations
that do not affect the replication rate. At each discrete
generation g, the population is described by a vector nf (g)
whose components correspond to the number of individ-
uals in each replicative class f = 0, 1, . . . F . The evolution
of the population obeys nf (g+ 1) =

∑f+1
f ′=f−1Mff ′nf ′(g),

where the non-zero elements of the mean matrix Mff ′ are

Mff ′ =







f(1− p− q) + 1 for f = f ′ <F,
(f + 1)p for f ′ = f + 1,
(f − 1)q for f ′ = f − 1

(2)

with the boundary condition MFF = F (1− p) + 1. The
class f = 0 is introduced only to simplify the equations,
and does not play any relevant role in the dynamics of the
growth process. Given the population size at generation

g,N(g) =
∑F
nf (g), and the average replicative ability at

that time, f̄(g) =N−1(g)
∑F
fnf (g), the total population

evolves according to

N(g+ 1) = (1 + f̄(g))N(g) (3)

for any generation g. The average replicative ability results
from a complex interplay between the composition of
the population in different classes at generation g and
the mutation parameters p and q. Thus, it is strongly
dependent on the initial conditions. Only in the limit g→
∞ do the relative fraction of individuals at each replicative
class attain fixed values, nf (g+ 1)/nf (g)→ λ [14], and
f̄(g)→ λ− 1.

Competition among Γ quasispecies. – As in the
general quasispecies model, competition is introduced by
fixing the maximum number Nmax of individuals that the
system can sustain. It is possible that populations start
with low numbers and do not fill the system initially. If this
happens, the different populations grow unrestrictedly for
a (usually short) time. Afterwards, a flux E proportional
to the population of each type is introduced. The equations
for the evolution of γ = 1, . . . ,Γ different populations in
this context are

nγf (g+ 1) = (1−E)

f+1
∑

f ′=f−1

Mγff ′n
γ
f ′(g) . (4)

The total population is N tot(g) =
∑Γ
Nγ(g) =

∑Γ∑F
nγf (g), and E is calculated by imposing the

condition N tot(g) =Nmax, once saturation is reached.
Following a derivation analogous to that carried out for
an isolated species, and considering now competition
for space as represented by E, the dynamical equations
for the total number of individuals in each population can
be written as

Nγ(g+ 1) =
[f̄γ(g) + 1]Nγ(g)

∑Γ
ζ=1[f̄

ζ(g) + 1]Nζ(g)
Nmax. (5)

Note, however, that this equation does not independently
yield the evolution of the total population, since f̄γ(g)
depends on the momentaneous composition of the popu-
lation. The precise way in which f̄γ(g) evolves is however
independent of the rest of the populations. Only once the
equilibrium distribution of each population is reached is
the dynamics fully described by the set of asymptotic
growth rates λγ . Thus, at equilibrium, the eventual winner
in the competition is the population with the highest
value of λγ , the only one that grows at a rate propor-
tional to the growth of the whole population N tot(g). The
density of any other population decreases to zero. Starting
from an arbitrary initial condition, however, might imply
a complex transient where independent populations do
not change monotonically. This dynamics becomes rele-
vant when finite populations are considered.
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Out-of-equilibrium competition between two

populations. – Once having derived exact results for
the competition among an arbitrary number of infinite,
heterogeneous populations in the asymptotic limit, we
study here the particular case of two finite populations
of composition nαf and nβf . Since we are interested in
evaluating the dynamical effects of strong fluctuations in
the population size, we consider from now on the initial
condition nαf (0) = 1 for f = fα0 , nαf (0) = 0 for f �= fα0 , and
similarly for the population β. That is to say, we start
with a single particle of each population with replicative
ability chosen at random among the classes present in
each population. The effective mutation rates for each
population are (pγ , qγ), their degrees of neutrality are
N γ = 1− pγ − qγ , and their asymptotic growth rates
are λγ , with γ = {α, β}. The populations grow in an
independent fashion until the time when the sum of their
populations equals Nmax. Then competition is turned on
and eq. (4) applies. The total population reaches Nmax
usually before the independent distributions have attained
their asymptotic profiles, so complex interactions between
both might take place. The first population with total
size Nγ < 1 gets extinct, and the other is by definition
the winner in that particular run.

In order to better analyse the effects of fluctuations
in the dynamics, we have devised a stochastic model
(DI) thas uses a discrete number of particles, and whose
dynamics will be compared with the mean field model
above (MF). In this discrete version of the problem,
a particle with a replicative ability f gives rise to a
progeny of size k, this value being drawn from a Poisson
distribution of average f . With the corresponding prob-
ability p or q the new individual changes to class f − 1
or f + 1, respectively. Figure 1 represents two time series
for the evolution of the total number of particles in each
population as obtained from models DI and MF in two
different situations. In fig. 1a, the two initial particles
have a relatively low replication ability, and initial advan-
tage is given to the asymptotically better competitor,
who wins in this particular run after a short number of
generations. In the MF model this occurs with probability
one, while in the DI model there is a 0.138 probability that
population β wins. In fig. 1b, however, and starting with
a high replicative ability, the winner is the population
with lower λ and lower neutrality. The probability to win
is 1 for the MF model and 0.994 for the DI model. Indeed,
after a transient time where population numbers are
relatively constant, advantageous mutants are generated
and become dominant in population β. The remarkable
result is that the ability to generate diversity at the initial
steps of evolution, together with a favourable initial
condition, are essential to reverse the fate predicted by
the asymptotic theory. Both models yield qualitatively
equivalent results, and though the specific time series for
each run differ due to discreteness in the DI model, the
average behaviour is also quantitatively comparable.
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Fig. 1: Evolution of the total number of individuals (above)
and of the time-dependent growth rate (f̄ + 1, below) in two
competing populations that start with a single particle each.
Two models are used, a discrete (DI) and a mean field one
(MF). Parameters are Nmax = 103, pα = 0.1, qα = 0.001, pβ =
0.2, qβ = 0.05, and F = 20, which yield asymptotic growth rates
λα = 19.04 . . . and λβ = 18.61 . . .. Hence, population α wins
in all equilibrium competitions. (a) The replicative ability of
the two initial particles is fα0 = 6, fβ

0
= 3. In the MF model,

population α wins; in the DI model, the probability that β
wins is of 13.8%. (b) The initial replicative ability is fα0 = 15,
f
β
0

= 15. Contrary to the asymptotic expectations, population
β wins in the MF model, and in the 99.4% of runs with DI.

In a competition experiment with the initial conditions
described, it is important to know what is the probability
wβ that the weaker competitor, that is population β, elim-
inates the superior population α. To estimate this quan-
tity we first run all pairs of initial conditions (fα0 , f

β
0 ),

and evaluate for each pair the probability [1−Pα(fα0 , f
β
0 )]
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Fig. 2: Probability to choose the pair (fα0 , f
β
0

) as initial
condition when the values are drawn from the equilibrium
distribution nγf (g→∞), γ = α, β. Since λα >λβ , population α
is the winner in any equilibrium competition. The color code
indicates, for all possible combinations of initial conditions, the
probability Pα(fα0 , f

β
0

) that the a priori stronger competitor
wins. (a) MF model. Given a combination of initial conditions,
α either wins with probability one or loses with certainty. (b) DI
model. There is a smooth transition between the domains
where either α or β win. Averages over 103 independent runs
have been performed. For both models, and due to the finite
size of the population, the probability that β wins reaches one
even in a domain where fα0 � f

β
0

. The strength of β relies on
its ability to generate diversity faster than its competitor.

that β wins. Now, the likelihood that a particular pair of
initial conditions is chosen depends on the fraction nγ(g) of
individuals of each type in each population γ = α, β, right
before the bottleneck occurs. These distributions depend
on the characteristics of the environment, and in particu-
lar on the number of generations allowed for independent
evolution before the bottleneck takes place and competi-
tion is thus turned on. In general, the weighted fraction
wβ of winning runs for β can be written as

wβ =
∑

(fα
0
,f
β
0
)

[1−Pα(fα0 , f
β
0 )]nαfα

0

(g)nβ
f
β
0

(g) , (6)
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Fig. 3: Fraction of winning runs for the weaker competitor.
(a) Variation of wβ with the degree of neutrality. The asymp-
totic growth rate of α is λα = 18.0 with pα = 0.1575 and qα =
0.0025;λβ is as shown in the legend. Each point in the curves
corresponds to a combination of parameters (pβ , qβ) yield-
ing the growth rate specified, with pβ , qβ < 0.5 and pβ > qβ .
(b) Dependence of wβ with the system size. Numerical results
indicate that wβ �N

−a
max, with a dependent on the values of

λα and λβ . Results are for the MF model. The curves shown
correspond to λα = 19, pα = 0.1, qα = 0.001 and two competi-
tors, both with λβ = 18.6, and parameters pβ = 0.2, qβ = 0.05
(C1a) and pβ = 0.27, qβ = 0.11 (C1b); same population α
and a competitor with λβ = 16 (pβ = 0.405, qβ = 0.055) (C2);
λα = 18.6, pα = 0.2, qα = 0.05 and two competitors, both with
λβ = 18, and pβ = 0.1575, qβ = 0.0025 (C3a) and pβ = 0.315,
qβ = 0.1 (C3b).

and the precise form of nγ(g) needs to be estimated in
each particular case.

Previous studies with single populations subjected to
bottlenecks have addressed two particular situations where
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Fig. 4: Time to elimination (in number of generations) of one of
the populations in competition experiments. The parameters
for population α are fixed in all runs: fα0 = 12, pα = 0.1575,
and qα = 0.0025, yielding λα = 18.0. The four curves shown
have parameters as follows: Nmax = 103, pβ = 0.3, qβ = 0.04,
yielding λβ = 17.0 (C1); Nmax = 106, same pβ and qβ as C1
(C2); Nmax = 103, pβ = 0.15, qβ = 0.0017, yielding λβ = 18.1
(C3); and Nmax = 106, same pβ and qβ as C3 (C4). Arrows
signal, for each case, the value of fβ

0
where the winner changes

from one population to the other. Population α wins in all
positions at the left of the arrow. Results are for the MF model.

the distribution of replicative ability types can be analyt-
ically calculated: the case of small g and the asymptotic
limit g→∞. In the former case, the time allowed for inde-
pendent development between bottlenecks is short enough
that only the types f0, f0+ 1, and f0− 1 are present before
the population bottleneck takes place [14]. In the latter
case, the population has evolved for a large enough number
of generations such that the asymptotic distribution of
replicative types has been achieved [14,15]. In the first
case, average values of the replicative ability are low, and
the population cannot be optimized, as it occurs in the
asymptotic case. As an example, we show quantitative
results corresponding to the limit g→∞ in figs. 2 and 3.

Figure 2 represents the winning population as a function
of the replicative ability of the initial particles. In the MF
model, there is a sudden transition from initial conditions
where α wins to a domain where β wins. Stochastic fluc-
tuations in the population sizes and in their compositions
smoothen the transition in the DI model. This transition
corresponds to the values codified in the color scale. Keep-
ing the characteristics of population α fixed, the proba-
bility wβ that β wins increases when the population size
decreases, when the difference between the asymptotic
growth rates decreases (maintaining the same degree of
neutrality) and when the degree of neutrality decreases
(maintaining the same λβ). These cases are shown in fig. 3,
which summarizes the response of the system of two popu-
lations to changes in the model parameters. Finally, let

us remark that the qualitative behavior described is inde-
pendent of the precise form of the density functions nγ(g),
though as a way of example we have used the asymptotic
distribution to yield the quantitative results represented
in figs. 2 and 3.

A relevant quantity in the competition process is the
time Te elapsed until the eventual winner eliminates
its competitor. Different representative parameters have
been used to analyse how Te behaves, as represented
in fig. 4. In all cases, the time to elimination attains
maximal values at the transition where the winner shifts,
and takes higher values the smaller the difference between
the asymptotic growth rates. Lower neutrality favors the
weaker competitor for other conditions fixed, as already
observed. As the population size increases, the time to
elimination grows as well. Not only the absolute value
of Te depends on the parameters, but also the precise
position of the transition threshold.

Discussion. – The outcome of a competition between
two infinite populations of quasispecies is completely
determined by the relative asymptotic growth rates.
However, the combination of out-of-equilibrium situations
with finite populations might induce extinction of the
asymptotically better competitor. Natural heteroge-
neous populations, as RNA viruses, rarely evolve under
equilibrium situations. Actually, the high mutation rate
of those organisms is an adaptive response to highly
fluctuating environments. The scenario tackled in this
letter should thus be applicable to real world situations,
where two or more viral strains, each structured in a
number of fitness classes, infect and compete for the
resources of the host. In certain cases, extinction of the
supposedly fitter population might occur simply due to
unfavourable initial conditions or to an exceedingly high
neutrality in comparison to the competing population,
as described. Though other more complex interactions,
as viral interference, might be at play, we have shown
that the faster appearance of advantageous mutants in
a population with a smaller asymptotic growth rate can
cause the extinction of the superior population, even
in extremely large populations. The finite size effect
studied becomes less probable as Nmax increases, and
eventually disappears in the limit of infinitely large
populations. However, biological populations have sizes
in a range where elimination of the stronger competitor
might occur with relatively high probability. For exam-
ple, the number of viral particles inside a cell rarely
exceeds 103, and competition between strains and even
different fitness classes within a population might be
determinant to settle the characteristics of an infectious
process [16].

There is experimental evidence supporting the kind of
mechanism here described. In several experiments with
different strains of vesicular stomatitis virus (VSV), it
was observed that one of the strains could occasionally
displace the other [17] (as it happens close to our
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transition boundary, see fig. 2b) or with probability
one [18] (before or after the transition in our case).
Those experiments inspired theoretical approaches able
to qualitatively explain an observed increase of replicative
ability during competition and the eventual exclusion
of one of the populations [19]. More recently, other
experiments suggest that an exceedingly high degree of
neutrality can be deleterious under environmental stress,
since beneficial mutations of a supposedly superior strain
are not generated rapidly enough to displace the competi-
tor [20]. Finally, in another experiment of coinfection with
two strains of VSV, it was shown that a superior mutant
could be suppressed by a population that replicated at
a lower rate if the size of the first population did not
exceed a critical threshold level [21]. Theoretical and
experimental analyses demonstrate that finite size effects
are important in non-equilibrium competition and in
co-evolution situations, and can act as a relevant selective
pressure towards different evolutionary strategies, among
others a decrease of neutrality to mutations.
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