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Abstract – The high error rates of RNA viruses at replication suggest they might be close to the
extinction threshold predicted by quasispecies theory. Hence, moderate increases in the mutation
rate could drive them to extinction. In persistent infections of an RNA virus treated with a
mutagen, it has been observed that infectivity eventually disappears, although the replicative
ability of the virus is not affected. By means of a simple model that takes into account two
phenotypic traits, we demonstrate that extinction is a purely stochastic phenomenon caused by
the intermittent outbreaks of a defective, non-infective subpopulation. The transition between
dynamics dominated by population fluctuations (finite system size N) and the mean-field behavior
(N→∞) is characterized. We discuss the implications of this alternative pathway to viral
extinction.

Copyright c© EPLA, 2009

Introduction. – Large populations of replicating
individuals evolving at high mutation rates form hetero-
geneous groups able to adapt to new environmental
situations in relatively short time spans. The theory of
quasispecies [1], a first attempt to formalize the collective
behavior of such populations, predicts the existence of
an error threshold above which the population cannot
maintain its identity: As the threshold is crossed, the
master sequence is lost from the population, which
wanders in sequence space as an unstructured cloud of
low fitness mutants. This situation is equated with the
extinction of the quasispecies, understood as the dis-
appearance of its viability. Quasispecies theory estimates
the value of the critical mutation rate as the inverse of the
length of the evolving molecules. Studies with different
organisms, especially RNA viruses, seem to confirm that
natural mutation rates are close to that value [2]. The
evolutionary explanation of this fact argues that near the
error threshold identity is still maintained, while diversity
(assumed to determine adaptability) is maximal. Hence,
a mechanism able to cause viral extinction could be the
increase of the mutation rate to values above threshold.
At odds with those theoretical expectations, experi-

mental observations in viruses [3] and ribozymes [4] reveal

(a)E-mail: cuevasms@inta.es

that they can withstand mutation rates 3 to 8 times
above their natural ones and still maintain their viability.
An important issue, not taken into account in the original
quasispecies theory, is the very large number of potential
genotypes expressing the same phenotype. An example is
provided by the average number Mn of RNA sequences
of length n whose folded state is compatible with a
given secondary structure (a first step towards becoming
functional molecules): Mn = 1.402n

3/21.748n [5]. More
realistic models of quasispecies distinguishing between
genotype and phenotype (the true object of selection)
predict a (phenotypic) error threshold at mutation rates
several-fold higher than those expected only from consid-
erations on the genotype [6]. This hints at the possibility
that natural quasispecies are not that close to the error
threshold. It has been suggested, instead, that the natural
mutation rate might result from a process that minimizes
adaptability time, the latter emerging from a compromise
between minimizing search time in the genome space
(this occurs at high mutation rates) and obtaining a rapid
fixation of advantageous mutants (this takes place at low
mutation rates) [7].
Though increased mutagenesis is a robust experimental

way to produce the loss of viability of a viral population,
a current matter of concern is whether extinction truly
occurs through crossing an error threshold [8–11], as
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postulated by classical quasispecies theory. A different
form of extinction is mutational meltdown, where all
genotypes in the quasispecies disappear simultaneously.
At present, this seems to be the mechanism that better
describes experimental observations of viral extinction
under a strong increase in the mutation rate.
Let us illustrate those two extinction mechanisms with

a simple example. Consider a quasispecies formed by
two phenotypes characterized by replicating at rates
σ1 = σ > 1 and σ2 = 1. At time t, each type is represented
by ν1(t) and ν2(t) individuals, whose abundances evolve
according to

ν1(t+1) = σ(1−µ)ν1(t)+µ′ν2(t),

ν2(t+1) = (1−µ′)ν2(t)+σµν1(t)−πν2(t).
(1)

Faster replicators mutate to lower replicators at a rate µ,
while backward or compensatory mutations occur at a rate
µ′ <µ. Slower replicators can be hit by lethal mutations at
a rate π. The extinction threshold is by definition the point
where the high-fitness class is lost from the population
while low-fitness classes are maintained. According to the
model in eq. (1), this would happen when ν1(t→∞) =
ν∗1 becomes zero, while ν

∗
2 �= 0. It can be easily shown

that both populations maintain positive values for any
µ′ �= 0, irrespectively of the initial condition: There is no
extinction threshold if the class of fast replicators can be
regenerated by the slower class. For µ′ = 0, the extinction
threshold occurs at σ(1−µ)� (1−π). Note that it always
exists in the absence of lethal mutations while, for π� µ,
σ cannot simultaneously fulfill the previous inequality and
be larger than one. The most relevant result is that the
presence of backward mutations, unavoidable in any model
describing the phenotype [6,12], precludes the existence of
an error threshold.
The mutational meltdown takes place when the popu-

lation cannot replicate fast enough to sustain itself, and
both classes disappear simultaneously. Mathematically,
this happens when the largest eigenvalue of the matrix
describing the dynamics of the system becomes smaller
than one, meaning that the average number of offspring is
less than one per parent individual. In the previous exam-
ple, its value can be exactly calculated. To first order in
µ′, mutational meltdown occurs when

σ(1−µ)+
µσ

σ+π− 1−µσ
µ′ < 1. (2)

At odds with extinction through an error threshold,
mutational meltdown seems to be a generic mechanism
through which viral populations can undergo extinction.
There might be still other mechanisms behind the loss

of viability of viral populations. It has been reported that
also mild increases in the mutation rate can cause extinc-
tion of infectivity in viruses. Experiments with persistent
infections of lymphocytic choriomeningitis virus (LCMV)
treated with a small amount of mutagen revealed that
the virus eventually loses the ability to produce infective
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Fig. 1: Absolute number of RNA molecules and infective virions
inside cells persistently infected with LCMV and treated with
100µg/ml of the mutagen 5-fluorouracil. After about 90 hours
of infection, the cells cease to produce infective virions, though
RNA replication is not impaired [13].

particles, though replicative ability is not affected (see
fig. 1). In a persistent infection, intracellular selection for
higher replication rates is acting all the time. However,
viral particles are slowly released to the external medium
and the ability of the virus to jump from cell to cell is
not selected for. This situation is remarkably different
from lytic infections, where release of viral particles to
the medium is a fast step that implies breaking the cell.
In the latter case, selection for replicative ability cannot
be decoupled from selection for infectivity.
The extinction of infectivity in persistent infections

of LCMV cannot be understood in the framework of
present quasispecies theory. The molecular mechanisms
behind the observed behaviour can be summarized as
follows. The replicative ability of a genome is related
to its capacity to bind to and be copied by replication
enzymes (polymerases). This depends strictly on the
sequence of the genome. Unavoidable mutations in the
copying process can affect the binding and copying of a
sequence. On the other hand, infectivity depends on the
performance of proteins codified by that same genome.
Hence, changes in infective ability are conditional on the
genome experiencing a mutation, though not all mutations
have an effect in proteins, and thus only a fraction
of those will affect infectivity. The result is that, in a
persistent infection, the two traits evolve under different
selection pressures: genomes able to replicate compete
inside each cell, while infectivity behaves as a neutral trait.
A neutral trait, by definition, is not useful in the current
environment and thus can accumulate random mutations.
Those mutations may result in a loss of viability in the long
run. It was conjectured [13] that the role of the mutagen is
to enhance the appearance of a class of defective mutants,
able to replicate but unable to infect susceptible cells. This
parasitic subclass eventually induces the extinction of the
whole population.
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A step forward towards modelling real systems is to
consider that phenotype is a multi-trait feature that can
be only rarely reduced to a single variable. Actually,
there are abundant examples in the literature where
two phenotypic traits need to be considered in order to
appropriately describe the evolution and adaptation of
heterogeneous populations. Among them, growth rate
and yield [14], robustness and evolvability [15,16], or
virulence and replicative ability in competition assays [17]
have been pondered as characteristics that simulta-
neously affect the survivability of a viral population.
Motivated by the experiment of extinction of infectivity
in LCMV, we here introduce a model for the evolution of
a population whose individuals are characterized by two
traits subject to positive and neutral selection pressures,
respectively.

Model of a quasispecies with a two-traits

phenotype. – We consider a quasispecies formed by
four different classes. Fast replicators have an average of
R offspring per replication cycle; slow replicators have
r. Either type can take a viable or a defective form.
We assume that viable forms maintain the integrity of
their genomes and correctly code for the proteins that
permit replication and infection. Thus, replication of
either type is only possible if individuals of the viable
type are present. The four types and the corresponding
transition rates are depicted in fig. 2. The replicative
ability decreases (increases) with probability p (q).
Changes in this trait fix new mutations that can affect
viability. With probability w, an individual mutating to
the class of slow replicators can simultaneously lose its
viability; with the same probability, viability is recovered
conditional on experiencing a mutation increasing the
replicative ability. The model includes lethal mutations
with rate p affecting slowly replicating individuals. The
rates p, q, and w, actually stem from a microscopic
mutation rate characteristic of each virus. They can be
treated as constant on the average for a given genome
(i.e. population, species, or organism). Dynamics proceeds
through discrete generations and the population size N
is constant. The matrix M characterizing the mean-field
dynamics of the system reads

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R(1− p) q 0 qw

Rp(1−w) 1− p− q 0 0

0 0 R(1− p) q(1−w)

Rpw 0 Rp 1− p− q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

We set r= 1 without loss of generality, thus fixing the
time scale. The vector describing the evolution of the
fraction of individuals in each type, n(g) = {nV (g), nv(g),
nD(g), nd(g)} obeys

n(g+1) = α(g)Mn(g)/[α(g)λ], (4)

Fig. 2: Schematic representation of the four types forming the
quasispecies. Permitted transitions between types are indicated
as arrows, with their corresponding rates.

where α(g) = nV (g)+nv(g) is the fraction of viable indi-
viduals at generation g, and λ is the largest eigenvalue
of M . As initial condition we assume n(0) = {1, 0, 0, 0}.
Note that though α(g) actually does not affect the average
composition of the population, it is the cause of extinction,
since disappearance of the viable types means disappear-
ance of the whole population.
Assuming that viability is a neutral trait implies that

cell-to-cell transmission is not represented in the model.
Hence, eq. (4) describes intracellular dynamics, with a
typical time scale shorter than that of transmission of the
infection. The size of the system thus corresponds to the
number of viral genomes inside a single cell.
This model has an explicit solution n∗ = n(g→∞)≡
{nV , nv, nD, nd},

n∗ =N−1 {2q, (1−w)(c− a+), 2q(1−w), c− a+} , (5)

with N = (2−w)(c− a−), a± = (R− 1)(1− p)± q, c=
[(1− p)2(R− 1)2+2(R(1+ p)− (1− p))q+ q2]1/2, and
λ= 1/2[(R+1)(1− p)− q+ c]. As with the example
discussed in the introduction, no extinction threshold
is found for q �= 0, that is, when backward mutations
exist. Mutational meltdown is possible and holds for
an asymptotic growth rate at the mutation-selection
equilibrium below one, that is λ< 1.
The solution given in eq. (5) represents well the

dynamics of the quasispecies only for sufficiently large
populations. For small population sizes the dynamics are
qualitatively different and dominated by the intermit-
tent appearance of class D. In this regime, stochastic
extinction is a common event.
There are different limits of the model worth mention-

ing. The case w= 0 corresponds to a quasispecies
described only by its replicative ability where back and
lethal mutations are considered (only classes V and v
sustain finite populations). The case w= 1 is formally
identical, with classes V and d surviving. This model
has been analyzed for instance in [9]. The case q= 0
is particularly interesting. Since class D can only be
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Fig. 3: Dynamical regimes of the model. (a) Stochastic regime,
N = 200. For small system sizes, the dynamics are dominated
by the intermittent appearance of class D. The dotted line
corresponds to the value obtained in the approximation q= 0,
nV0 ≃ 0.8182. (b) Transition regime, N = 2500. For system
sizes N ≃Nm, the population of D individuals is always
above zero, though fluctuations are still large. (c) Mean-field
regime, N = 105. For N→∞, the population in each class
approaches the mean-field value. The dotted line corresponds
to the asymptotic solution, nV ≃ 0.4317. Parameters for all
simulations are p= 0.1, q= 0.01, w= 0.1, R= 2, which yield
Nm ≃ 2116 according to eq. (8).

generated through (rare) beneficial mutations appearing
in class d, class D can remain empty for extended
periods of time when the population size is small enough.
Thus, in the biologically relevant limit of small N and
q→ 0, the case q= 0 should approximate accurately the
intervals where nD(g) = 0. The stationary populations
n∗0 = {n

V
0 , n

v
0, n

D
0 , n

d
0} in this limit are

n∗0 =N
−1
0 {N0−Rp,Rp(1−w), 0, Rpw} , (6)

with N0 =R+ p− 1 and λ0 =R(1− p).
In order to check the accuracy of our analytical results,

we have performed numerical simulations of the dynamical
model. As initial condition, we take N individuals in class
V . At each generation g, the population replicates deter-
ministically (with rates R and 1) to generate the individu-
als at generation g+1, which then mutate according to the
probabilities described. This step introduces stochasticity
in the system. If the population n(g+1)>N , a random
subset of N individuals is selected. This keeps the popu-
lation size bounded. When, as a result of fluctuations, the
number of viable individuals reaches zero, the population
is considered extinct and the simulation halts.
The different dynamical regimes of the population are

illustrated in fig. 3. As the size of the population N
increases, the behaviour changes from a stochastic regime
dominated by the intermittent appearance of class D
and with average values well described by eq. (6) to a
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Fig. 4: Numerical and analytical results for the model in the
stochastic regime. (a) Exponent of the distribution of interval
lengths (in number of generations) without individuals of the
D class. Two values of q= 0.01 (circles) and q= 0.05 (squares)
are shown for N = 100, R= 4 and w= 0.5. Solid symbols are
results from simulations; open symbols are analytical results as
in eq. (7). (b) Probability P (gb) of a D-outbreak of length gb

generations. The solid line is the prediction of critical branch-
ing processes; circles correspond to numerical simulations for
p= 0.1, q= 0.01, w= 0.2, R= 2, and N = 100.

mean-field regime with average values following eq. (5).
Though the transition is smooth, it will be shown that
there exists a characteristic system size Nm where the
stochastic regime crosses over to the mean-field regime.

Stochastic regime. – For small q and finite system
size, the population of defective, fast replicating indi-
viduals appears in bursts that either are terminated
after a finite number of generations or (also in finite
time) invade the population, thus causing its extinction.
In this limit, the probability p0 that class d does not
produce any individual of class D in one generation

is p0 ≃ (1− q(1−w)/λ)Nn
d

0 . Hence, the probability
P0(g) = p

g
0 of having an interval of g generations without

individuals of class D reads

P0(g)≃ exp

{

−gN
Rpw

R+ p− 1
ln

(

1−
q(1−w)

R(1− p)

)}

. (7)

The exponent of this distribution, ln p0, is represented
in fig. 4(a) together with the results of numerical simu-
lations. The outbreaks of the D class for sufficiently
small p and q start with a single individual and follow
the dynamics of a branching process with branching
ratio m. To a first approximation, the value of m is the
average number of offspring of class D per individual in
that class (≈R(1− p)) divided by the asymptotic growth
rate of the population λ0. Hence, in this limit, where
the contribution from class d is neglected, m= 1 and
the dynamics follows a critical branching process [18].
The corresponding generating function, f1(s) = e

s−1,
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allows to obtain a number of exact results. The prob-
ability of termination of the outbreak at any time in
the future is the solution of f1(s

∗) = s∗, which has the
known result s∗ = 1. The probability of termination
after gb generations is P (gb) = fgb(0)− fgb−1(0), where
fk(s) = f [fk−1(s)]. It can be iteratively obtained and,
asymptotically, P (gb)∝ (gb)−2. This function is compared
with numerical simulations in fig. 4(b). The existence
of a neutral trait and the critical branching dynamics
of the defective class are two sides of the same coin:
Any coupling between traits would imply deviations
from neutral behaviour and values of the branching ratio
different from one.

Mean-field regime. – As the size of the system
increases, so does the duration of the outbreaks. At some
system size Nm, the previously isolated bursts merge, and
the approximation of the dynamics of D as a critical
branching process is no longer valid. For N >Nm all types
are continuously represented in the quasispecies, albeit
fluctuations in population sizes might still be large. The
system size Nm can be estimated as the value of N where
class d contributes on average one individual per time step
to class D, Nmn

dq(1−w)/λ≃ 1, which yields

Nm ≃
(R+ p− 1)

q

(2−w)

(1−w)

(R(1+ p)+ q− 1−R− c)

(R(1+ p)+ q− 1+R− c)
, (8)

using the value of nd in eq. (5) and the corresponding λ.
Series expansion of Nm in powers of q yields

Nm =
2−w

1−w

[

1− p

q
+

R

(1− p)(R− 1)
+O(q)

]

, (9)

so Nm diverges as q→ 0. Hence, for finite p, w, and R,
in situations where the probability of hitting beneficial
mutations is small enough, the dynamics is systematically
dominated by population fluctuations. The system size
Nm separates the two relevant dynamical regimes. Below
Nm, the dynamics is mostly determined by stochastic
effects and well described by the solution q= 0 plus the
probabilistic appearance of critical D-bursts: extinction is
common. Above Nm, the dynamics is well described by the
mean-field asymptotic solution. As N grows, extinction
becomes increasingly unlikely.
The transition between the stochastic and the mean-

field regimes can be further characterized through the
distribution of probability densities for each of the four
subpopulations. In the stochastic regime, the abundances
of viable and defective types proceed in anti-phase, such
that when the population of V + v is high that of D+ d
is low (as in fig. 3(a)). In this case the average population
values agree with eq. (6): the distributions of V , v and d
present a maximum near those values and the abundance
of D is close to zero. When outbreaks of D appear, the
populations of V and v decrease strongly while population
D becomes abundant. Extinction supervenes if the number
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Fig. 5: Transition from stochastic to mean-field regimes. We
show the position of the maxima for the distribution of
populationsD (solid circles) and V (open circles). Solid squares
correspond to the average value of nD(g), open squares to that

of nV (g). From eq. (6), nV0 = 0.53, n
D

0 = 0 (in agreement with
the maximal values at the stochastic regime), while dashed
lines signal asymptotic mean-field values obtained from eq. (5).
The maxima of the distributions eventually converge to those
values as fluctuations disappear in the limit N→∞. The insets
show three representative probability distributions for nD(g)
(solid line) and nV (g) (dashed line), below, during, and above
the transition. The estimated system size separating stochastic
from deterministic behavior is Nm ≃ 696, according to eq. (8).
Parameters are p= 0.3, q= 0.01, w= 0.2, R= 2.

of V + v attains zero, α(g) = 0 in eq. (4). In the mean-field
regime, the size of the system is large enough to sustain
finite populations of all four classes. The maxima of the
population size distributions move towards the average
values predicted by eq. (5). In fig. 5 we plot the main
quantities characterizing the transition.
The average time to extinction Text grows exponentially

with the system size, Text ∝ exp{kN}, with k depending
on the model parameters. For the case shown in fig. 5,
k= 0.0054(1), so Text increases more than a thousand-fold
between N = 100 and N = 103. We do not have evidence
that Text→∞ at finite N , though its rapidly increasing
value asserts that, in practice, extinction will be rarely
observed once in the mean-field regime.

Discussion. – The transition between the stochastic
and the deterministic regimes is reminiscent of the
behavior observed in other dynamical systems with
transitions characterized by qualitative changes in the
populations distributions. Examples are the dynamics of
particles in asymmetric potentials under the action of
an external noise [19] or noise-induced transitions [20].
In our case, the source of noise is intrinsic and due
to population fluctuations. Related collective behavior
has been described for fluid neural networks, where the
system experiences an ordering transition as the density
of elements increases [21].
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Fitness is a multitrait feature with different expression
in different environments. In lytic infections, where cells
are killed after a number of replication cycles, the require-
ment to maintain the ability of infecting susceptible cells
acts as a positive selection pressure that regularly removes
non-infective particles from the population. When infec-
tions are persistent, selection pressure over infectivity is
released. Since the number of viral particles inside cells
is relatively small (about 102–3), population fluctuations
are large, and, in the presence of one trait not subject
to selection, a defective subpopulation able to induce the
extinction of the whole might appear. Stochastic extinc-
tion through lethal defection [13] becomes possible. From
another viewpoint, stochastic extinction occurs only if the
characteristic time between infections of susceptible cells
is larger than the time to extinction Text. Every new
infection event acts as a filter cleaning the population
from defectors, unable to infect, and thus resetting the
dynamics to the initial condition. This mechanism can
be generalized to situations where a previously essential
trait is temporarily unneeded (not selected for) and then
becomes essential again. This could be the case of genes
that respond to uncommon environmental conditions or
get rarely switched on: the absence of activity could lead
to the loss of viability.
The model here presented shows how simple evolution-

ary mechanisms can cause the extinction of populations
of fast mutating pathogens under environmental changes,
and strongly suggests that one could devise strategies
to take advantage of those mechanisms in fighting viral
infections. In this context, tuning the balance among
intracellular replication, frequency of infection of new cells
and multiplicity of infection, or applying mild increases
in viral mutation rate, appear as therapies alternative
to the massive use of drugs. In a broader framework, a
better understanding of the complex population dynamics
typical of these organisms should make it possible to
identify and manage selection pressures over target traits,
resulting in the development of new control strategies at
the host level for infectious diseases.
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