Eur. Phys. J. B 70, 583-592 (2009)
DOI: 10.1140/epjb/e2009-00254-8

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Topological properties of phylogenetic trees in evolutionary

models

M. Stich® and S.C. Manrubia

Centro de Astrobiologia (CSIC-INTA), Ctra. de Ajalvir km. 4, 28850 Torrején de Ardoz (Madrid), Spain

Received 16 April 2009

Published online 21 July 2009 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009

Abstract. The extent to which evolutionary processes affect the shape of phylogenetic trees is an important
open question. Analyses of small trees seem to detect non-trivial asymmetries which are usually ascribed
to the presence of correlations in speciation rates. Many models used to construct phylogenetic trees have
an algorithmic nature and are rarely biologically grounded. In this article, we analyze the topological
properties of phylogenetic trees generated by different evolutionary models (populations of RNA sequences
and a simple model with inheritance and mutation) and compare them with the trees produced by known
uncorrelated models as the backward coalescent, paying special attention to large trees. Our results demon-
strate that evolutionary parameters as mutation rate or selection pressure have a weak influence on the
scaling behavior of the trees, while the size of phylogenies strongly affects measured scaling exponents.
Within statistical errors, the topological properties of phylogenies generated by evolutionary models are
compatible with those measured in balanced, uncorrelated trees.

PACS. 87.23.Kg Dynamics of evolution — 89.75.Hc Networks and genealogical trees

1 Introduction

Ever since the first observations on the diversity of living
beings, there has been an interest in classifying them ac-
cording to their similarities. As early as in the mid XV cen-
tury, taxonomy jumped from folk inventories to global
classification. By the end of the XVIII century, the taxo-
nomic classification included about ten thousand species
of plants and more than thousand different genera. The
next level in the taxonomy, that of families, was also in-
corporated towards the end of that same century [1]. Still,
the idea of a common origin for living beings was absent
from that classification. It was only through the onset of
an evolutionary theory, and especially after the publica-
tion of The Origin by Charles Darwin [2], that the nowa-
days iconic image of a tree of life relating extant organisms
to extinct common ancestors began to take form.

It was soon observed that most taxonomic groups
are species-poor, and only a few are composed of many
species, this pattern repeating as one climbs up taxonomic
levels [3]. The resulting hierarchical classification could, in
the light of evolution, be viewed as a branching process
in time, thus completely changing the interpretation and
meaning of the data. The first model aimed at representing
the common origin of species and their uneven distribution
within the tree was that of Yule [4], which already yielded
a remarkable agreement with empirical data. Yule’s model
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is a neutral model of evolution that starts with a single
species in the tree. The probability that a species splits
into two is uniform in the tree and does not depend on
time. The statistical properties of the genealogy so con-
structed are identical to those of the equal-rates Markov
(ERM) model and of neutral coalescent models of phylo-
genetic trees [5].

The model proposed by Yule is a first instance of
assimilating taxonomy to phylogeny. Actually, whether
taxonomic classification is consistent with the actual phy-
logeny of species is a non-trivial question: while the former
results from a largely artificial division, the latter explic-
itly follows the evolutionary history of a clade, and con-
tains no visible division into groups. The robustness of
statistical patterns in taxonomy, as obtained from differ-
ent groups of animals and plants and at different taxo-
nomic levels, seems to support the hypothesis that statis-
tical properties of taxonomy do not depend on the details
of the classification and contain reliable information about
the patterns of biological diversity [6]. Still, it remains to
be proved that the properties of taxonomy at the species
level is equivalent to the statistical properties of higher-
order taxa [7], although analyses of the topology of large
trees seem to support that mechanisms driving biological
diversification are independent of the taxonomic level [8].

Phylogenetic trees are nowadays routinely recon-
structed by means of genomic data [9]. Molecular informa-
tion on extant organisms (parts of genomes, single genes,
mitochondrial RNA, proteins or even metabolic networks)
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can be used to determine an evolutionary distance be-
tween each pair of species. Different methods permit to
reconstruct a tree where species sit at the tips of the tree,
each associated with a branch. Two branches merge in a
node, which stands for the common ancestor. The length
of the branches, once calibrated, conveys information on
the times in the past where the splitting occurred. De-
spite all the major advances in the reconstruction tech-
niques [10], it is important to keep in mind that we can-
not access the real phylogenetic tree containing the precise
historical relationships between species.

Most phylogenetic trees available comprise several to
hundred species. Trees with less than ten species are very
abundant. The evolutionary time scale they reflect is usu-
ally relatively short, and the species in those trees are
typically closely related. Small trees have been the focus
of many studies dealing with their shape and its mean-
ing in the evolutionary process [11]. Trees of medium
size, between ten and hundred species, are also frequent.
They may yield more reliable statistical measures and
span larger time scales. Trees with more than hundred
species, of which there are only a few, are considered large
trees [5,12].

An often used measure to quantify to which extent
branching probability deviates from homogeneity and
affects the shape of phylogenetic trees is tree imbal-
ance [5,11,13,14]. In a completely balanced tree each pair
of daughter branches splits with the same probability;
in a completely imbalanced tree only the left (or right)
daughter branch splits. Natural trees or any tree gener-
ated through a model with a certain random component
will be in-between those extremes. In particular, for small
trees, a random process involved or an imprecise recon-
struction can produce a considerable degree of imbalance.
Only large enough trees can demonstrate whether imbal-
ance is intrinsic to the evolutionary process or a finite-size
effect. From a biological viewpoint, a balanced phyloge-
netic tree indicates that clades are equally likely to speci-
ate. An unbalanced tree, on the other hand, reveals that
species keep memory of the ability of their ancestors to
diversify. In other words, if a species stems from a highly
radiating group, it will be more prone to speciate in the
future. This possibility has received some support from
empirical analyses, though the inheritance of proneness to
speciate is local in time [15]. There are additional evolu-
tionary reasons that can induce a change in the speciation
rate and thus affect tree imbalance [13]: refractory peri-
ods after speciation, adaptive radiations, selective extinc-
tions, or fluctuations in the environment causing differ-
ences in the selection pressures. However, this memory of
past success or of contingent evolutionary events should
be observed only up to certain time scales, since there is a
second process causing that memory to wear off: mutation.
Mutations and adaptation to changing environments have
the effect of erasing the memory of past success. There is
evidence that correlations between the properties of dis-
tant species should decay exponentially fast due to muta-
tion, even in the presence of persistent inheritance. This
has been calculated for phylogenetic models of neutral
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genotypes [16]. In a very different framework, it has been
observed how mutation erases spatial correlations expo-
nentially fast in non-neutral models for competition be-
tween phenotypes [17].

Tree imbalance is a topological measure of tree shape
that does not take into account branch length — i.e. evo-
lutionary time — , and can be quantified in different
ways [13]. The use of these measures goes beyond the
phylogenetic context. For example, they have been used
to compare between random trees and trees generated
from spin-glass energy landscapes [18]. There, it has been
shown that tree asymmetry of spin-model trees increases
with the size of the tree. In this work, we use as topo-
logical measure the relation between the subtree size and
the cumulative branch size, which have served to quantify
the branching properties of transportation networks [19],
food-webs [20,21], and phylogenetic trees [8,14], among
others. In particular the latter works, where the analyzed
data came from the most exhaustive database available,
TreeBASE [12], and included trees with up to 600 species,
served as motivation for our study.

The main aim of this work is to quantitatively study
certain topological properties of phylogenetic trees gen-
erated by different models of evolving populations. This
means that the nodes of the trees created by such models
actually represent individuals (e.g. RNA molecules) rather
than species. We then analyze how the topological quan-
titites depend on significant parameters as the mutation
rate, the selection pressure, and the size of the tree.

The article is structured as follows: we begin by re-
viewing the topological properties of simple models sta-
tistically equivalent to the ERM (such as the backward
coalescent) and analytically derive the relevant quantitites
for simple trees, being of particular importance the case of
completely balanced trees (Sect. 2). These first results are
useful to compare with the topological characteristics of
more sophisticated models. The core of our contribution is
the analysis of different evolutionary population dynam-
ics models where the ability of an ancestor to produce off-
spring is inherited and mutated with a variable probability
(Sects. 3 and 4). This approach differs from models that
consist of algorithms specifying how to construct a tree
but lack any biological interpretation of its rules [7,14],
and also from biologically motivated models including in-
heritance (i.e. memory) and mutation where, however, no
selection is acting [16,22]. For a Moran’s model, the effect
of selection on the topology of small genealogical trees
has been studied using alternative measures of tree imbal-
ance [23].

In Section 3, we use an explicit model of molecular evo-
lution considering RNA sequences which are folded into
their minimum free energy secondary structure. The dis-
tance from each folded sequence to a target secondary
structure determines its ability to replicate. In Section 4,
we introduce a simple model of a replicating population,
where each element produces offspring according to its
fitness. Mutation may increase or decrease the fitness of
the individuals of the daughter generation. These simple
models allow us to study very large systems and show
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that, for small trees, the topological properties differ from
the asymptotic properties of random models. The results
for the models investigated in Sections 2-4 are compared
in Section 5. There, we show that for large enough sys-
tem size the topologies of all trees, i.e. also of the trees
obtained from the explicit evolutionary models with se-
lection, seem to be compatible with trees obtained from
the class of ERM. The article is closed with a discussion
of the results (Sect. 6).

2 Topology of simple trees

Two useful quantities to evaluate the topology of trees
are the subtree size and the cumulative branch size. For
each node 7 in the tree, the subtree size A; is defined as
the number of subtaxa diversifying from node 4, includ-
ing itself. The cumulative branch size C; is defined as
C; =5 j Aj, where the sum runs over all nodes j di-
versifying from ¢, including itself. For a given tree, the
probability distributions of A and C' may display power-
law tails, P(A) ~ A= and P(C) ~ C~7. Whenever there
is a one-to-one relationship between A and C values, as
in the cases we are going to discuss, it is of the scaling
type, C ~ A", with n = (1 — a)/(1 — ). The values of
the exponents characterize the degree of imbalance of a
tree. It has been shown that completely balanced trees
are asymptotically described by a =2, v =2, and n =1
— with a relevant logarithmic correction in P(C) that we
rederive below. The exponents characterizing completely
unbalanced trees are a = 0, v = 1/2, and n = 2. An
interesting example deviating from these extreme behav-
iors is the case of efficient transportation networks, whose
topology is described by an exponent 1 = 3/2 that results
from an optimization principle [19]. The scaling of food
webs was first reported to yield a value for n between
1.13 and 1.16 [20]. Later, however, it was convincingly ar-
gued that the previous non-trivial value was a spurious
result due to food webs having only a few trophic levels,
and the exponent was corrected to n = 1 [21]. This is
a first word of caution towards the meaning of topologi-
cal quantities derived from small systems. Finally, critical
branching trees [24] display a = 3/2, and all supercriti-
cal branching trees follow o = 2 [25]. This latter class is
shared by the ERM, by Yule’s model [4] and also by the
coalescent [5]. This means that asymptotically the scaling
of these models is characterized by the exponent n = 1,
coinciding with the case of completely balanced trees. In
Sections 4 and 5, we will present simulations of the coa-
lescent model for comparison with the models introduced
below.

In the remaining of this section we derive the probabil-
ity distributions for completely balanced trees and com-
pletely unbalanced trees, and pay particular attention to
the non-trivial logarithmic corrections: these cause a con-
tinuous bending of the distribution P(C) that, as will be
shown in forthcoming sections, may lead to estimations of
the exponent 7 in small systems remarkably far from its
asymptotic value.
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Fig. 1. Simple trees and quantities characterizing their topol-
ogy. (a) Completely unbalanced tree. (b) Completely balanced
tree. Each tree starts with n leaves (tips). The table shows the
level I in the tree, the number of nodes N, /,(I) for the un-
balanced /balanced case and the corresponding values for the
subtree size A, ,(l) and the cumulative branch size C,,;(1).

In the completely balanced and completely unbalanced
trees, A; and C; only take a limited possible number of
integer values (see Fig. 1). In order to quantitatively com-
pare these results with other examples in the literature,
we will assume a continuum approximation (as in [25]) to
estimate the probability density distributions P(A) and
P(C). We first calculate the number of nodes with each
value of A and C' and subsequently normalize dividing by
the corresponding interval, AA and AC, between actually
represented values. In this section, n denotes the number
of tree tips.

We begin with the completely balanced tree. Let us
call Np(l) the number of nodes at level I, and A(I)
and Cy(l) the value of the branch size and the cumu-
lative branch size, respectively, at that level. The inter-
val lengths separating two consecutive values are AA;, =
Ap(l+1) — Ap(l) and ACy, = Cp(1 4 1) — Cy(1). We apply
Cy(l) = 2CH(1 — 1) + Ap(l), with the condition Cp(1) =1
to solve the recursion for Cy(l). Then, Ny(l) = n/2!71,
A) =28 =1, G(1) = 1+ 21— 1), A4, = 2, and
AC, = (1+1)2%

To obtain expressions in terms of A, and (Y, the para-
metric variable [ is eliminated and we transform N(1)
to probability distributions P,(A) and P, (C) by dividing
through the intervals AA, and AC), respectively. This
yields

2n
(A+1)%

The parametric solution for P,(C(1)) reads

Py(A) = (1)

PCO) =y iy 4 ) (2)
with
I = Vgl(;) +1, (3)

where z = (C — 1)In2/2, and with W (z) denoting the
Lambert W-function, defined as the function satisfying
z = W(z)eW#). Thus, the distribution P(C) cannot be
obtained in an explicit analytical form. The Lambert W-
function admits the following asymptotic expansion for
z > 3 [26],

Inln z Inlnz\1?
W(z)=Inz—Inlnz+ +0 . (4

Inz Inz
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which substituted to first order in the expression for P,(C')
eventually yields a functional form for large C,

n
P (C) ~ . 5
b(C) = 0 In 2(In(C'In 2)) 5)
Corrections with arbitrary precision can be obtained
through the use of additional terms in the series expansion
of W(z).
Finally, the function Cy(A) has the exact form

(A+1)In(A+1)

Co(4) = In2

- Aa (6)
thus presenting the well-known Aln A behavior that
asymptotically yields the scaling n = 1, although it is im-
portant to keep in mind the logarithmic correction. Note
that the previous derivation can be understood as a mean-
field approximation to the topological properties of a tree
whose nodes produce, on average, two branches per gen-
eration. The calculation can be further generalized to a
tree whose branches split into k£ new branches on average
at every level [. Taking now Cy(I) = kCy(I — 1) + Ap(1),
Cy(1) = 1, the relationship between C' and A is

Ink

L [A(k = 1)+ 1] [MAEE0 -
(k —1)2 - @

Cy(4) =

Note that k& does not change the functional form of C'(A):
the scaling exponent remains unchanged and only the co-
efficients are modified.

For completely unbalanced trees, the relevant paramet-
ric quantities read N, (I) =1ifl # 1, N, (1) = n, A, () =
20-1,C,() =12 +1-1, AA, =2, AC,, = 2(I + 1), so

1
P,(A4) x 5= const., (8)

and
A(A+3)
2 )
hence displaying a power-law scaling with exponent n = 2.
It is interesting that the completely unbalanced tree
presents a pure power law in the limit of large tree sizes,
contrary to what occurs with the completely balanced
tree.

Cu(A) = (10)

3 Evolution of RNA populations

RNA is considered to be an appropriate model for study-
ing evolution of populations [27,28]. Each RNA sequence
can be mapped to a folded secondary structure of min-
imum free energy. The mapping between sequence and
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structure is degenerated (many sequences fold into the
same secondary structure), which constitutes one of the
most interesting properties of this model. RNA folding
provides an explicit separation between genotype (repre-
sented by sequences, upon which mutations act) and phe-
notype (secondary structures, upon which selection acts).
In this work, we use the evolution of populations of RNA
sequences to study phylogeny while in previous work we
focused on other aspects of the evolutionary process [29].
Since we have access to the exact genealogy of the pop-
ulation, we do not need to resort to reconstructed trees
and hence eliminate one of the possible sources of error in
quantifying phylogenetic properties. Further, the model
is biologically grounded and has an explicit evolutionary
mechanism. In this way, it overcomes one common criti-
cism raised against some phylogenetic models, i.e. the ab-
sence of an appropriate measure of biological fitness [5].

3.1 Evolutionary algorithm

Our model system consists of a population of N replicat-
ing RNA sequences of constant length, subjected to point
mutations and selection. The algorithm sketched below is
described in more detail in reference [29].

Population sizes and sequence length are kept constant
during simulations. Every molecule of the population is
initialized with a random sequence of the four type of
nucleotides A, C, G, and U. Every time that a molecule
replicates, each of its nucleotides has a probability p to
be randomly replaced by another (or the same) type of
nucleotide. This is how mutation is implemented. At each
generation, the sequences are folded into secondary struc-
tures with help of the Vienna RNA package [30], version
1.5, used with the current standard parameter set. We
define a target secondary structure which represents in
a simple way optimal performance in the given environ-
ment. The target structure considered in this study corre-
sponds to a biologically relevant RNA structure consisting
of 165 nucleotides, the 165 thiM molecule, a riboswitch
identified in the bacterium Escherichia coli [31]. For the
aim of this study, choosing a particular target structure is
not of crucial importance. We expect our results to hold
qualitatively for other secondary structures. We assume
that the probability that a sequence replicates is larger
the more similar is its secondary structure to the target
structure. In this way, sequences having structures similar
to the target structure become more abundant. Eventu-
ally, for mutation rates below a critical mutation thresh-
old, the population adapts to the environment, that is,
it maintains a finite fraction p of sequences folding into
the target structure. To quantify the similarity between
a secondary structure of a given sequence and the target
structure, we use the base-pair distance as implemented
in the Vienna package [30]. The base-pair distance be-
tween two secondary structures is given by the number of
base pairs that have to be opened and closed to transform
one structure into the other. The probability p(d;) that
sequence ¢ replicates is given by

p(d;) = Z ' exp(—Bd;/d), (11)
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165 thiM 5 3
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u
Fig. 2. RNA model. (a) Target structure 165 thiM. The
molecule starts at 5 and finishes at 3’. Paired bases are in-
dicated by a short dash. (b) RNA model. Time to find tar-
get structure as a function of p (N = 1000, 8 = 1.0, av-
erages over 5 realizations were performed). In all figures to
be shown, error bars stand for the dispersion o of a set of
i =1,..., M measurements x;, with average 7 = M ™! >
and 0> = M~ (z; — )°. Averages over time intervals are

performed accordingly.

where d is the average distance of the population
to the target structure, d = vazl d;/N, and Z =

Zilil exp(—0d;/d), where the parameter 3 denotes the
selection pressure.

3.2 Evolutionary population dynamics

Before we describe the phylogenetic properties associated
with the evolution of RNA populations, let us present
some general features of its evolutionary dynamics. The
initial ensemble of random sequences evolves through dis-
crete generations. After a number of generations g (which
differs from realization to realization), it finds the target
structure for the first time and later reaches an asymptotic
state, characterized by statistically stationary quantities.
The value of g, and hence the duration of the transient
before attaining the asymptotic state, depends on the pa-
rameters of the system, especially on the mutation rate p,
as shown in Figure 2b. In accordance with previous work
for shorter RNA molecules [29], we observe that the search
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Fig. 3. RNA model. Density of correctly folded sequences as
a function of u (a) and B (b). Parameters: N = 1000, 8 =
1.0 (a), o = 0.004 (b). Averages over 5 realizations and 2000
generations in the asymptotic regime were performed.

process for small mutation rates is slow, for intermediate
rates fast, and for large mutation rates slightly slower than
in the intermediate range.

A relevant quantity to characterize the state of the
population, in particular its evolutionary success, is the
fraction p of sequences folding into the target structure.
Due to the stochastic nature of evolution, this quan-
tity fluctuates in time even after reaching the asymptotic
regime. Therefore, within this regime, we perform aver-
ages over long time intervals (and different realizations,
starting from distinct initial RNA populations). In Fig-
ure 3a, we display how the average value of p varies as a
function of p. For low mutation rates, a large fraction of
molecules fold into the target structure. As p increases,
p decreases monotonically until it approaches zero. Then,
the so-called phenotypic error threshold is crossed, and
the mutation rate becomes too large to allow the fixation
of the target structure within the population. Also these
results agree qualitatively with those obtained for shorter
RNA molecules [29]. In Figure 3b, we show the behavior
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of p as we vary 3. Weak selective pressures make evolu-
tionary success difficult (small p) while large values of (3
lead to larger p. The parameter 3 establishes the rela-
tive advantage of one variant with respect to the rest of
types. For the same mutation rate, increasing the value of
0 gives a larger relative advantage to structures closer to
the target, so the value of p increases.

3.3 Phylogenetic properties

Once the population has reached its statistically station-
ary state, we construct the corresponding phylogenetic
tree. Then, we can calculate the subtree branch size A
and the cumulative branch size C'. For all parameter sets
studied, the functional behavior of C = C(A) seems to
follow approximately a power law (similarly to what is
observed in real data [8]). Further below, we discuss the
limits of this approximation. For each simulation, the scal-
ing exponent 7 is determined by a least-squares regression.
An example is displayed in Figure 4. The leaves of a tree
contribute with N points (A4,C) = (1,1) to the data, the
next branching level with many points (4, C) = (3,5), al-
most independently of the overall branching properties of
the tree (cf. Fig. 1). Since we are interesting in the scaling
properties which become clearer for large values of A and
C, we bin the values of A and C in boxes of powers of 2
and in this way avoid a statistical overrepresentation of
the low-level branching parts of the trees. In the figure,
we show the results of 5 independent realizations (5 trees)
and an example of a single power-law fit. The fit values
have been averaged, yielding, e.g. for © = 0.004 a mean
exponent of n ~ 1.336.

In Figure 5a, the dependence of 1 on p is displayed.
We see that ) seems to increase with p although standard
deviations (of the distribution of the 5 average values) are
large, in particular for large mutation rates. Still, it must
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Fig. 5. RNA model. Scaling exponent 7 as a function of u (a)
and B (b). Parameters: N = 1000, 8 = 1.0 (a), u = 0.004 (b).
Averages over 5 realizations were performed.

be noticed that the variation of n over the whole range
is quite small (mean values from 1.332 to 1.346), taking
into account that the evolutionary success, and hence the
phenotypic structure of the population, change strongly
across the regimes (Fig. 3). If we vary § (Fig. 5b), we
observe a less clear trend, although also here the mean
values of 7 remain within a relatively narrow range.

4 Simple model with inheritance
and mutation

The RNA evolutionary model studied in the previous sec-
tion, albeit biologically grounded and simple from a bio-
logical point of view, is already complex from a theoretical
or computational point of view due to sequence-structure
map. In order to understand to which extent the results
obtained are generic, we introduce a phenomenological
model defined by simple rules but still containing basic
evolutionary mechanisms.
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4.1 Evolutionary algorithm

Consider a set of ¢ = 1,..., N individuals, each charac-
terized by a fitness f;(g) at generation g. At generation
g+ 1, a group of N new individuals substitutes the pre-
vious one. The probability p(i — j) that individual j at
generation g+ 1 originated from individual 7 at generation
g is proportional to f;(g),

o [l
PE=D= 5 fle)y

where the sum runs over the whole population. With prob-
ability v, the fitness of the offspring takes a value randomly
drawn between 0 and 1, i.e. f;(g+ 1) =4, § €]0,1[; with
the complementary probability 1 — v, it inherits the fit-
ness of the parent 7, fj(¢+1) = fi(g). In the limit, v — 1
the system becomes memoryless and there is no correla-
tion between the reproductive rates of the ancestors and
the rates of the current descendants. In the limit v — 0
the population is completely correlated. However, after a
transient period the initial diversity of fitness values is lost
in the latter case, since only one of the initial individuals
becomes the ancestor of all of the extant group. At that
point, there is no selection and the model becomes effec-
tively neutral, thus equivalent to ERM. We will refer to
this model as IM model (for inheritance with mutation).

The complexity of the RNA evolutionary model stud-
ied in the previous section requires long computational
times. Thus, both the population size N and the number
of realizations for each value of the parameters were lim-
ited to relatively small values. The IM model permits to
work with larger systems (we will show results for trees
with up to 10* tips) and to perform averages over a larger
number of independent realizations, thus obtaining better
estimates of relevant quantities.

(12)

4.2 Evolutionary population dynamics

This model differs from the RNA model in that there is
no target function to drive the evolution of the population
(a condition analogous to evolving towards a target RNA
structure), and in consequence there is no error threshold.
From a biological point of view, the interesting duality
of having a meaningful representation of both genotype
and phenotype, reflected by RNA sequence and secondary
structure, is lost in this simple model.

A way to quantify the degree of optimization of the
population is to calculate the average fitness (f) in the
asymptotic regime, averaging over all individuals, long
time intervals and different realizations. Figure 6 illus-
trates that if the mutation rate is low, selection drives the
population into a state with many individuals with high
fitness, while for a high mutation rate, fitness values are
essentially random and hence take an average value 0.5. In
terms of fitness landscapes, we are implementing a single-
peak landscape where the population clusters close to the
fitness maximum for low p, while it spreads steadily as
increases. In spite of the fact that the IM model is much
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Fig. 6. IM model. Average value of fitness as a function of the
mutation rate v. The system size is N = 1000, and averages
over 100 independent trees for each value of v were performed.

simpler, the average fitness shows a behavior qualitatively
similar to the density p of correctly folded sequences in
the RNA model (cf. Fig. 3a).

4.3 Phylogenetic properties

After reaching the asymptotic regime, we can build the
phylogenetic tree, calculate A and C, and determine 7. In
Figure 7a, we show 7 as function of v and observe that in
spite of the completely different evolutionary outcomes of
the cases v — 0 and v — 1, the scaling exponent 1 does
not vary much.

Next, we have studied how 7 depends on the system
size N. Before we actually show the results for the IM
model, let us first discuss what we observe for the back-
ward coalescent model (as introduced in Sect. 2). There,
trees are constructed backwards by joining two species at
each generation. As we have discussed in the Introduction,
and shown in Section 2, the functions P(C) and C(A) in
the completely balanced tree have logarithmic corrections
to their scaling behavior that especially affect small trees.
In our analysis of the dependence of the exponent 7 on the
system size, we observe for the IM model a decrease in 7
as trees become larger, as represented in Figure 7b. Fur-
thermore, we detect a clear correspondence between the
behavior observed in the evolutionary IM model (dots)
and that of a completely uncorrelated phylogeny, repre-
sented by the coalescent model (solid line). Compared to
the coalescent, the IM model maintains certain degree of
correlations that yields values of 17 above those of the coa-
lescent model for the system sizes explored. Nevertheless,
its behavior closely follows that of the ERM class for which
we know that in the limit N — oo, the exponent n — 1.

5 Comparison of the scaling properties

In this section we review and quantitatively compare the
scaling properties of the phylogenies generated by four of
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Fig. 7. IM model. (a) Average value of the scaling exponent n
as a function of v. The system size is N = 1000, and averages
over 100 independent trees for each value of v were performed.
(b) Average value of the scaling exponent 7 (dots). The muta-
tion rate is v = 0.2, and averages over 100 independent trees
for each value of N were performed. The solid line stands for
the exponent 7 obtained from averages over 10° independent
trees of corresponding size generated with a backward coales-
cent model.

the evolutionary models discussed in this work. In decreas-
ing degree of biological complexity (thus realism) they are
(i) evolution of RNA populations with explicit selection
on the phenotype and two evolutionary parameters, mu-
tation rate p and selection pressure (3, analyzed in Sec-
tion 3 (RNA model); (ii) simple model with individuals
characterized by their fitness and one evolutionary pa-
rameter, the mutation rate v, presented and studied in
Section 4 (IM model); (iii) the coalescent, implemented as
a set of extant species whose phylogeny is reconstructed
backwards in time by randomly selecting two of the re-
maining species at each generation and merging them in a
common ancestor (COA model); and (iv) a fully symmet-
ric and balanced tree, whose scaling properties are known
and have been rederived in Section 2 (CBT model).
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Fig. 8. Distributions of topological quantities for the four

evolutionary models discussed in this work. (a) Subtree branch
size distribution P(A). (b) Cumulative branch size distribution
P(C). The legend specifies which symbols correspond to each
of the models and the parameters used. In the case of RNA,
the selection pressure § = 1. Averages over 5 (RNA), 100 (IM),
and 50 realizations (COA) have been performed. Dashed lines
have the slopes —2, corresponding to the scaling exponents «
and ~ for a completely balanced tree in the asymptotic regime.

In the next two figures we compile the results obtained
for the topological quantities P(A), P(C) and C(A), as
defined in Section 2, corresponding to the four models
enumerated. They summarize our results and support our
main conclusion: simple evolutionary processes generate
phylogenetic trees with topological properties essentially
indistinguishable from the ERM class. Figure 8a presents
the distribution P(A) for the four models above and two
different system sizes for RNA and IM. We recall from Sec-
tion 2 that, for CBT, P(A) o A=2. Thus, as the size of the
trees increases, the slope of the distribution for CBT (solid
line) approaches —2, as indicated by the dashed line in
the plot. Since the COA model belongs to the ERM class,
the corresponding curve also has an asymptotic slope of
—2. More strikingly, also the evolutionary models (RNA
and IM) seem to follow this behavior. Thus, though the
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Fig. 9. Cumulative branch size C' as a function of the branch
size A for the four evolutionary models discussed in this work.
Parameters as in Figure 8. The dashed line has slope one, cor-
responding to the scaling exponent 7 for a completely balanced
tree in the asymptotic regime.

analytic results could only be derived for the fully sym-
metric case of CBT, our results support the view that the
dominant functional forms of the phylogenetic trees ob-
tained through the different models here studied asymp-
totically agree with the CBT.

The corresponding distributions P(C) are compared
in Figure 8b. There is a clear change in the scaling in this
case, since a visible bending affects the whole range of
C-values explored. At odds with other systems (as trans-
portation networks [19]), where the functional form of the
distribution of accumulated branch sizes seems to be dom-
inated by a pure power law, we have shown for the class
of CBT that P(C)  (C*InC)~!. Furthermore, the loga-
rithmic correction seems to be shared by the phylogenetic
trees arising from all the models analyzed. As is clearly
seen in the figure, attemps to fit the distribution P(C)
with a pure power law may yield misleading results.

The complex scaling behavior of P(C') is also reflected
in the relationship between C' and A, as shown in Figure 9.
The analytical results for CBT show that C' o« Aln A,
again with a logarithmic term that causes a systematic de-
viation from a pure exponent = 1 in all the range of tree
sizes that could be explored. Also here we observe that the
evolutionary models over a large range of tree sizes qual-
itatively agree with the results obtained for completely
balanced trees.

6 Discussion

Intrinsic evolutionary parameters and environmental con-
ditions determine the fate of species, their ability to sur-
vive and radiate, and the eventual size of their clades. In
this work we have addressed the question how these pro-
cesses modify the topology of phylogenetic trees. We have
used models of individual replicators evolving towards an

591

optimal target function (RNA model) or according to a
fitness function (IM model), to create phylogenetic trees
and subsequently investigate the scaling properties of their
topological quantities. We have shown that, in evolution-
ary models with different degrees of complexity, finite-size
effects result in quantitative changes in tree topology that
largely exceed those due to mutation and selection.

It is indeed remarkable that parameters as the selec-
tion pressure and the mutation rate play such a weak role
in the topological properties of phylogeny, while the size
of trees significantly affects the measured values of the
scaling exponents. If, as hypothesized (see, e.g. Ref. [16]),
mutation acts in the sense of erasing correlations as time
(i.e. tree size) increases, it can be expected that smaller
systems are more correlated, hence present a higher de-
gree of imbalance and as a consequence yield larger values
of n: they are by construction closer to imbalanced trees,
for which in the limit of complete imbalance n = 2. Larger
values of 7 for smaller trees is actually what we observe,
together with an important decrease of n for increasingly
large systems, a variation much larger than that due to
changes in the mutation rate.

In this work, we have considered large trees and fo-
cused on the scaling behavior of the subtree size A and
cumulative branch size C'. The effects presented here do
not contradict findings for small trees where tree imbal-
ance is generic: evolutionary trees produced by a Moran’s
model are found to be only slightly more imbalanced than
neutral ones [23]. We emphasize again that the bending
of the distributions demonstrates that imbalance of small
trees is compatible with the ERM scaling.

We should mention that we have not studied the scal-
ing behavior of trees with persistent imbalances. There are
some models in the literature where branching probabili-
ties of species are assigned according to their position in
the tree (cf. on the size of the parent clade), thus caus-
ing persistent asymmetries or imbalances [14]. That class
of models has not yet been analyzed from the viewpoint
of the asymptotic scaling of C' and A. This might be an
interesting objective for future investigations.

A way of distinguishing whether the non-trivial ex-
ponents measured in natural phylogenies genuinely reflect
non-trivial aspects of the evolutionary process itself or, on
the contrary, result from the small size of the trees con-
sidered, would be to check for the presence of correlations
between the measured values of «, 7, and n and the num-
ber of species in each tree. Even in the case that those
correlations would be weak or absent in real systems, we
believe that other quantities beyond the topological prop-
erties studied here are necessary to characterize the role
of different mechanisms shaping the tempo and phyloge-
netic structure of the evolutionary process. In the light of
our results, we can but agree with previous investigations
leading to the conclusion that the presence of universal
scaling exponents can be considered just a consequence of
the parent-child structure of a taxonomy [32,33].
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