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Abstract

In recent studies, a new class of models dealing with evolutionary processes on the large
timescale have shown that many of the general traits of the fossil record can be reproduced
under some simple assumptions. Additionally, the study of living ecosystems and their net-
work organization, as well as the time series analysis of population fluctuations, points in the
direction that complex ecosystems are organized close to instability points where extinction of
species and ecological turnover would be the rule. In this paper, we further explore these ideas
and their implications for our understanding of evolution as a complex dynamical process with
some universal features linked with network-level properties. In particular, a source for the
decoupling between micro- and macroevolutionary mechanisms is provided.
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Fig. 1 A food web from Trelease Woods, Illinois [data from Cohen et al. (1990)15 ]. Many different types of interactions
are included as arrows connecting different compartments. Some of the nodes are in fact clusters of a number of species and
contain many different groups of organisms. The network here shown is a simplified one. Although direct interactions are
easily recognized, the relevance of higher-order links can only be assessed as evolution proceeds. Basal species (those that do
not have preys) have green background, top species (do not have predators) have blue background, and intermediate species
(have both predators and preys) are represented with red background. The links indicate the predator-prey relationship,
arrows go from prey to predator: Dotted links start in basal species, solid line links go to top species, and links between pairs
of intermediate species are dashed. The most predated group corresponds to Diptera (outgoing arrows in red), while most
diverse predators have ingoing arrows in black (crested flycatcher, red-headed woodpecker and barred owl).
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1. INTRODUCTION: ECOSYSTEMS
AS COMPLEX SYSTEMS

Biological species have been traditionally treated
as isolated entities, and pictured as simple ele-
ments somehow influenced by an external constant
or slightly fluctuating environment. Classical stud-
ies on population genetics have dealt with basic
models of specific traits of fixed species, and the un-
derlying ecological structure has been often forgot-
ten. In fact, this simplification is unavoidable, since
the full consideration of all species in an ecology
goes beyond any reasonable mathematical treat-
ment. As a consequence, in most cases, and in spite
of the clear success of this approximation, the link
between population genetics and ecology becomes
far from satisfactory.1

Ecosystems have a well-defined web structure
(Fig. 1) and several key regularities which sug-
gest the presence of constraints operating at higher
levels.2–4 As a starting point, many classical stud-
ies have considered the Lotka-Volterra S-species
equations,

dNi

dt
= Ni

εi − S∑
j=1

γijNj(t)

 (1)

where {Ni}, i = 1, . . . , S are the populations of each
species and Ni represent their relative abundances.
These models have been explored in depth, and two
main qualitative problems have been considered: (i)
small-n problems, involving two or three species and
(ii) large-n models, involving a full network of inter-
acting species. In the last case, the problem of sta-
bility versus complexity5–7 still remains open. The
so called community matrix Γ = (γij) is the basic
subject of all these studies.

A first look at a complex web of interactions im-
mediately tells us that many indirect effects might
be present.8,9 In fact, not only the direct links be-
tween pairs of species are relevant, but also the way
these links organize, the architecture of the very
network, can play a main role in the subsequent evo-
lution of the system. This observation, which can be
quantified in several ways,10 immediately poses the
question: How relevant are indirect effects? This
is an extremely relevant point.11,12 Indeed, their
relevance depends on the collective phenomena aris-
ing from the wiring structure of the web; and re-
cent studies show, in fact, that a network-dependent
response of ecosystems to perturbations is a com-
mon phenomenon.13 Using an experimental system

where the energy transfer between different species
was measured (i.e. the energetic strength of the
links), it was shown that links supporting relatively
small energy flows can have a large impact on the
rest of the system when varied or removed, while
interactions carrying an important flow of energy
can have a smaller impact [an illustrative example
is described in Ratcliffe (1979)].

The pattern of connections must be related with
the abundance of species S in the ecosystem. In
this context, we should mention some regularities
arising from the observation of real ecologies. In
fact, it seems that the degree of connectivity among
species in an ecosystem follows a well-defined (and
highly non-trivial) dependence with S, as will be
discussed later. On the other hand, complex eco-
logical systems are formed by a large number of
species whose abundances typically follow a log-
normal distribution [example Fig. 2, see also Pre-
ston (1962)]. The shape of this long-tailed distribu-
tion is a characteristic feature of many ecosystems
and reminds us that rarity is a dominant character-
istic of most species (and an essential contribution
to the overall diversity in world ecologies).

The problem of diversity is intimately linked to
the last observation. High diversity levels are a com-
mon trait in a great number of situations, among
which rainforests and coral reefs are major repre-
sentatives. This is the baroque of nature in the
words of the ecologist Ramon Margalef.18 But why
is nature diverse? We could imagine a planet where
life is restricted to a continuous sheet of photosyn-
thetic, single-celled organisms without further com-
plexity. Nonetheless, it seems clear that because
of the intrinsic trend to change arising from muta-
tional forces, variation is an unavoidable outcome of
living systems. Variation leads to new species, and
these species compete for resources. Competition
then appears as an important driving mechanism
able to remove less-fit competitors from the ecology.
Nevertheless, there are several ways to escape from
competitive exclusion. One is the presence of mech-
anisms that enable different species with different
ways of exploiting the same resources to co-exist
(like trade-offs between dispersal and colonization).
Another is the presence of spatial degrees of free-
dom: It can be shown that the simple introduction
of space for competitors to move may lead to a sit-
uation where no exclusion takes place.20,21

But clearly, because no arbitrary high levels of
diversity would be tolerated, thresholds to the max-
imum number of species are expected. This is an
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Fig. 2 Species abundances in a collection of moths caught in light trap [redrawn from Pielou (1969)]. When observations
are grouped by octaves (which is equivalent to plotting on semilogarithmic scale using logarithms to base 2), the histogram
obtained looks as though it would be well fitted by a symetrical normal curve truncated on the left and a long tail representing
the few abundant species.

immediate conclusion obtained from microcosm ex-
periments as well as from field data. An instance of
threshold phenomena in ecology has been recently
reported by Keitt and Marquet (1996) in relation
with the avifauna of Hawaiian Islands. It was shown
that after a gradual accumulation of introduced bird
species, numerous extinction events occurred once a
critical number of introduced species was reached.22

The distribution of extinction events and the wait-
ing times to extinction were shown to be power-law
distributed. Perhaps the accumulation of species
(by speciation events or natural immigration from a
species pool) could also drive a given natural ecosys-
tem towards the instability point, where extinctions
would be triggered.

We start with a brief review of available field data
describing ecosystems at two different time scales.
The first time scale is relatively short and considers
changes in population abundances and their spatial
variation, the second one is larger and might repre-
sent a coarse-grain in time and space of the previous
one. At the macroevolutionary level, only the pres-
ence or absence of species is relevant, and space is
not an explicit variable. While the shortest time
scale is characterized by ecological dynamics (i.e.
the system may be described by a set of coupled

equations of the Lotka-Volterra type for each of the
populations present, for instance), we will argue
that the second one is a consequence of the organi-
zation of the network of interactions close to insta-
bility points (where scaling properties are observed)
and is essentially decoupled from the dynamics at
the ecological time scale. To this end, we will an-
alyze the collective behavior arising from different
models formed by many species in interaction. A
particular feature of these models is that they in-
volve the presence of a transition point between
two different regimes of behavior characterized by
stable and by unstable dynamics, respectively.23,24

Such a point has particular stability properties that
might play a crucial role in our understanding of
why ecosystems are so diverse and unpredictable.

2. SCALING PROPERTIES OF
SPECIES IN INTERACTION

The complexity of an ecological system can be de-
scribed through different statistical measures which
quantify its degree of diversity (and its dependence
with time or space), the organization of the biolog-
ical interactions (e.g. predation), or the response of
the system to perturbations.
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2.1 Scaling in Ecosystems

Probably one of the best known quantitative mea-
sures in ecology is the species-area law, which
relates the variation in the number of different
species S with the area A available to them.
The most common way of representing the rela-
tion between species and area is in the form of a
power-law,

S ∝ A−z (2)

where the exponent z depends on the geographi-
cal characteristics of the area (particularly on the
degree of isolation of the ecosystem) and on the
taxonomic group analyzed.25 Recently, it has been
found that the relation (2) can be obtained from
ecological dynamics,26 and is indeed the functional
form to be expected in any complexely wired ecosys-
tem where the available resources scale proportional
to the area A. This statistical measure is comple-
mented with local records of species abundances. In
many cases, the number of individuals belonging to
a given species present in a monitored (relatively
small) area fluctuates strongly in time, pointing
to a high local turnover and to an important dy-
namical exchange of species in space. Indeed, re-
cent studies have quantified the permanence time
of species in local patches. In particular, Keitt
and Stanley (1998)27 have examined the dynamics
of breeding bird populations, and found that the
distribution of species lifetimes (i.e. the time be-
tween colonization and local extinction) follows a
power-law with a cutoff due to the finiteness of the
time series. Also the analysis of temporal series of
population abundances carried out by Pimm and
Redfearn (1988) revealed that non-trivial time cor-
relations are present.

A consequence of the system’s dynamics and of
the organization of network of interactions is that
the probability q(N) that a given species is repre-
sented by N individuals is

q(N) ∝ N−η (3)

with η ' 1− 1.25.17 Recent approaches recover this
relation,26,29 as well as the functional form of the
permanence time reported in Ref. 27. Equation (3)
might indeed be the result of the intrinsic multi-
plicative nature of the reproduction process inside
each species.

It has been observed that complex ecosystems re-
spond in a highly nonlinear way to perturbations.

10
0

10
1

10
2

Number of species

0

0.1

0.2

0.3

0.4

E
xt

in
ct

io
n 

ra
te

Fig. 3 Response of the introduced Hawaiian avifauna to
a number M of introduced bird species (in the horizontal
axes). The system does not “react” until a critical number
(M ∼ 10) is reached. Data from Ref. 30 as represented in
Ref. 22.

Keitt and Marquet22 have re-analyzed the effect
of the introduction of new species into Hawaiian
islands. Their results point to a threshold-like
phenomenon: Apparently, the island community
is organized close to its maximum capacity, and
the introduction of new species above a certain
threshold triggers avalanches of various sizes (see
Fig. 3).

All the properties discussed here portray ecosys-
tems as complex and highly dynamical systems, far
from the static picture which once characterized
theoretical ecology.

2.2 Scaling in Macroevolution

The analysis of fossil data is a valuable source of
information about the organization of ecosystems
at a large time- and space-scale. Here, one is no
longer concerned with the spatial distribution of a
population or with its fluctuations, but just with
the moment in time at which a species “appears”
(meaning it has accumulated enough mutations to
be substantially different from its parent species)
and goes extinct. This process can be pictured
as a tree where each branch represents a species,
new branches appear at speciation points and end
when the species dies out, and where distance be-
tween branches stands for the similarity between
species.
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This simple image allows us to estimate a num-
ber of quantities which are representative of the
macroevolutionary process. Suppose that each of
the branches stands for a genera (formed by a group
of related species). Sepkoski (1993)31 compiled data
for more than 14 000 genera, which show that the
distribution of lifetime of genera (i.e. of the lengths
of these branches), follows a clear power-law with
an exponent close to −2.32 The self-similar prop-
erties of taxonomy have been also analyzed. Since
species are grouped into genera, genera into fam-
ilies, families into orders, etc. the question arises:
What is the probability G(S) of having S sub-
taxa (e.g. species) within a given taxa (e.g. genera)?
Bruno Burlando studied the geometry of taxonomic
systems by means of various criteria (apart from
standard taxonomy) to group subtaxa in higher-
level taxa.33 He systematically obtained a power-
law dependence,

G(S) ∝ S−γ (4)

with an exponent γ ' 1−2, typically. This value of
γ seems to depend on the group considered and on
the taxonomic level. Recent analysis gives a simple
explanation for the lower values of γ by means of
branching processes.34 Although appealing, due to
its simplicity, this mechanism would fail to explain
any value of γ appreciably departing from unity (as
is observed).

Traditionally, the size of an extinction event
classified it as a background extinction (continuous
and low-intensity extinction) or as a mass extinc-
tion (catastrophic and usually related to external
disturbances), and different mechanisms were as-
cribed to them. The supposition of a linear de-
pendence between cause (perturbations) and effect
(extinctions) was behind the theory. A better mea-
sure of the distribution p(E) of extinctions of size
E returns a continuous and broad distribution,35,36

and the possibility of a single (even internal) mech-
anism able to explain the whole range of responses
has been put forward. We will discuss some con-
crete models in the forthcoming sections.

A threshold effect similar to that discussed in
the previous section is also observed in the re-
lation between originations of species and extinc-
tions within a geological stage. The main difference
(apart from the timescale) comes from the fact that
in the ecological systems, new species were intro-
duced through immigration, while in the present
case, it is speciation inside the system which acts
as a source of novelty (and possibly perturbation).
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Fig. 4 Percent of extinction in marine families in the same
geological stage where a number of families (shown in the
x-axes) appeared through speciation. The response of the
system seems to increase notably after a threshold of around
50 new originations is overcome.

We represent in Fig. 4, the percent of extinction
in families (vertical axes) due to the origination
of a number of families shown in the horizontal
axes. These data correspond to marine organ-
isms, and have been obtained from Benton (1995).37

This relation is again indicative that some thresh-
old phenomenon could be at play in macroevolution
(although not all the sets in Ref. 37 offer such a clear
relation).

A last set of scaling observations in the fossil
record corresponds to the presence of slowly decay-
ing correlations in the time series for extinctions
and originations. Recently, this has been a mat-
ter of great interest and also of controversy. First
studies38 pointed to a correlation extending up to
200 million years. These results were criticized due
to the methodology employed,39 but more careful
analysis still support the presence of very large cor-
relation times.40 Independent measures suggest that
the correlation might extend only for around 40 mil-
lion years.41 More recently, it has been claimed that
there are no significant correlations in time if trends
(like an increase in diversity) are eliminated from
the original data.42 Although the diversity of organ-
isms has been increasing since the origin of pluricel-
lular life (a fact reflected in any related time series),
it is not yet clear if this trend is a property of the
system or is indeed the origin of all correlations,
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Fig. 5 Diversity of planktic foraminiferal species from Jurassic to present. (a) Number of species recorded; and
(b) corresponding power spectrum, of the form P (f) ' 1/f . In (a), each point in the series corresponds to a stratigraphic
unit (Ref. 45). (c) Changes in diversity, computed as the absolute difference between two consecutive points in (a); and (d)
corresponding distribution.

being the remaining data uncorrelated.a Consider
the record of the number of planktic foraminiferal
species shown in Fig. 5 (data from Ref. 45). There
is a large extinction event at the end of the Creta-
ceous which brings the system back to a very low
degree of diversity. Starting there, diversity can
only be recovered at a much slower pace than is
eliminated. This time series shows 1/f noise and
the distribution of its corresponding increments de-
cays as a power-law with an exponent close to −2.
Only new and more accurate data can help set the
answer to the question on whether extinction and
speciations are highly correlated or essentially inde-
pendent in time.

The macroevolutionary scale again presents us
with a highly dynamical, continuously changing

system. We should remember that at least 99%
of the species that ever existed are extinct. Evo-
lutionary pathways can be understood, to a large
extent, as “arms races” where only those who
keep on adapting to an ever-changing environ-
ment can survive. It has been observed that
the probability that a taxon goes extinct at a
certain time does not depend on the time that
this group has been thriving around. In other
words, the accumulation of mutations (which at
the short time scale allow adaptation and hence
survival) does not produce any absolute improve-
ment. This is the Red Queen effect, essential
to understanding the dynamics of macroevolu-
tion, and which will be discussed in detail in
Sec. 4.

aA clear example of trend intrinsic to the system (at short time scales) is the kind of dynamics observed in stick-slip processes
(see for example Ref. 43 and Fig. 2 in Ref. 44). Imagine a block of wood on a rough surface trying to move under the action
of a spring which pulls it. The force felt by the block steadily increases until the block suddenly moves and a certain amount
of stress is released. At short timescales, it might seem that the force would only increase, and that the “real” dynamics is
hidden by this trend. But if a larger time series is available, one realizes that long periods of steady increase are compensated
by sudden releases of the accumulated stress, and both phenomena are just two outputs of the same process.
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Fig. 6 Phase transition in the linear stability analysis of a randomly wired model ecosystem. The probability of having the
system stable is plotted versus the connectivity of the S × S matrix. The variance α2 is fixed so that transition takes place
at the 0.5 connectivity value. The probability is computed after repeating the numerical stability analysis a hundred of times
for each connectivity value. As S grows, the curves show a sharper transition.

3. CONNECTIVITY AND
STABILITY IN ECOSYSTEMS

One of the first classical studies on the collec-
tive properties of food webs was carried out by
Robert May in 1972.5 May’s observation comes
from the classic results by Gardner and Ashby
(1970)46 concerning the stability properties of large,
randomly wired differential systems of the kind

dx

dt
= Ax . (5)

These authors showed that the larger the system,
the less stable it was.46 May further extended their
ideas to the ecological context and found deep
implications concerning the problem of stability-
connectivity in complex communities.5,47

Let us consider [following Hasting (1982)] the
discrete counterpart of an S-dimensional system,
described by

xt+1 = Bxt (6)

where B is an S×S matrix whose entries are gener-
ated at random. Specifically, the matrix has a con-
nectivity C ∈ (0, 1), i.e. the total number of nonzero
connections is CS2 (the rest of the links is absent).
The weight of the connections follows a distribu-
tion with zero mean and variance α2. As usual, (3)
can be understood as an equation for the evolution
of small perturbations around a stability point. In
this context, the entries of the S × S matrix, Bij ,
symbolize the effect of small departures from the
stability value of population j on species i.

Let us denote the probability of stability of
the previous system (in the linear stability anal-
ysis sense) as P (S,α,C). Then, the May-Wigner
theorem establishes that,

if α2SC < 1, then P (S,α,C)→ 1 as S →∞

if α2SC > 1, then P (S,α,C)→ 0 as S →∞ .

In terms of statistical physics, this system (in the
thermodynamic limit S → ∞) exhibits a phase
transition at α2SC = 1 (Fig. 6).

In order to gain some insight into the derivation
of the previous result, consider the following ap-
proximation. Suppose that the disturbance from
the stability population abundances of our species
verifies the constraint

x2 ≡ x2
1 + x2

2 + · · ·+ x2
S = 1 . (7)

Considering that the entries of the S × S matrix
are independent, identically distributed stochastic
variables, the average 〈(Bx)2〉 can be written in this
case as

〈(Bx)2〉 = 〈(Bx1)2 + (Bx2)2 + · · ·+ (BxS)2〉

=
S∑
i=1

〈(Bxi)
2〉 (8)

where xi is a column vector whose components are
δijxi with j = 1, 2, . . . , S. Then each term can be
obtained as

〈(Bxi)
2〉 =

〈
S∑
j=1

(Bjixi)
2

〉
. (9)
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Now, remembering again that the elements of B are
independent, the crossed terms can be ignored and
then

〈(Bxi)
2〉 =

〈 S∑
j=1

Bjixi

2〉
. (10)

For large S, the last expression stands for the vari-
ance of a sum of SC independent stochastic vari-
ables, each of them following a distribution with
zero mean and equal variance α2x2

i . Then

〈(Bxi)
2〉 = SCα2x2

i . (11)

Using the constraint (7), the average 〈(Bx)2〉 can
be written as

〈(Bx)2〉 = α2SC (12)

and we can see that if α2SC < 1, then 〈(Bx)2〉 <
1(= x2), thus the system will be stable (for a de-
tailed general analysis, see Ref. 48).

The May-Wigner result describes the general
conditions for a randomly wired community to be
stable. This requirement (random wiring) is a
rather strong one, since communities are, in prin-
ciple, the result of co-evolutionary interactions and
selection pressures. But further elaborations of the
previous set of conditions, involving much more
reasonable biological constraints, lead to the same
basic trade-off between connectivity and species
number. If some kind of global constraint to ecosys-
tem stability was operating, real (and so assumed
stable) ecologies should be observed in the (S,C)
plane below the critical line defined by the curve

S <
1

α2C
. (13)

But this is not what we find: most ecosystems are
in fact placed on the critical line. This is an in-
teresting observation and can be interpreted in a
rather clear way. Ecosystems are driven to larger
diversity by means of two basic mechanisms: immi-
gration at the short, ecological time scale, and spe-
ciation at the larger, evolutionary time scale. This
is typically a slow driving process which leads to an
increase in diversity. Hence, diversity might be an
unavoidable outcome of complex systems display-
ing intrinsic variability. At this point, higher-order
mechanisms start to operate: ecologies are formed
by interacting species and arbitrary interactions are

not permitted. This is basically what the previ-
ous S − C plot tells us: there are intrinsic regu-
larities controlling the global properties of complex
ecosystems.

Complex ecologies would result from the con-
flict between the driving mechanism, leading to in-
creases in diversity and the instability arising from
the global constraints. Once the stability thresh-
old is reached, global constraints start to operate.
Complex fluctuations arise and no stable structures
can be sustained beyond the threshold. Is there ev-
idence for such edge-of-instability behavior in real
ecologies? The answer is yes. Remarkable studies
on the nonlinear dynamics of both laboratory and
field populations has shown that the available data
are consistent with a system poised close to insta-
bility points.49 Ellner and Turchin (1995)49 have es-
timated the largest Lyapunov exponent (LLE) from
ecological time series by means of the so-called re-
sponse surface method (a powerful technique to an-
alyze short time series from real data). Critical-
ity (i.e. the transition regime separating ordered
from chaotic behavior or ordered from disordered
dynamics) is typically characterized by an LLE
close to zero, indicating that the system is neither
stable nor unstable. The Turchin-Ellner analysis re-
vealed that in fact the measured LLEs are clustered
around zero, strongly supporting the presence of a
marginal stable state.

4. THE RED QUEEN

Beyond the ecological time scale, there is a
larger temporal scale where evolutionary changes
in species (and thus in the parameters) occur. At
this scale, species seem to evolve and go extinct at
a constant pace, independent on their lifetime. In
other words, apparently it does not matter how long
a species has been thriving around and “adapting.”
It keeps on evolving and its chances to go extinct are
the same as for a recently generated species. This
observation motivated the metaphore of the Red
Queen50 as an ad hoc explanation for this counter-
intuitive result.

A model was developed by Maynard Smith and
co-workers (see Stenseth and Smith (1984)51 and
references therein) in order to test the plausibility
of the previous picture, namely, the continuous co-
evolution of species even in a constant environment.
Their model considers a fixed number S of interact-
ing species. It is assumed that some fitness mea-
sure φ can be defined, and a maximum fitness φ∗i is
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Fig. 7 Alice and the Red Queen. In Lewis Carroll’s Through the Looking Glass, the Red Queen told Alice “Now, you see, it
takes all the running you can do, to keep in the same place.”

supposed to exist for every species in a given fixed,
external biotic environment. At a given time, the
fitness φi and the maximum φ∗i take different val-
ues, and each species tries to reduce the so called
lag load, defined as

Li =
φi − φ∗i
φi

; i = 1, . . . , S . (14)

If βij is the change in the lag load Li due to a change
in Lj, then a mean-field equation for the average lag
load 〈L〉 =

∑
i(Li)/S can be derived. This is done

by first separating, for each species, changes due to
“microevolution of co-existing species” from those
linked with its own microevolution.51 The whole
equation for the lag load variation in a given species
is

δLi = δcLi − δgLi (15)

which simply says that the lag load typically in-
creases due to changes in the other species and
decreases due to microevolutionary changes in the
species under consideration. This can be written in
the following way,

δLi =
S∑
j=1

βijδgLj − δgLi (16)

where βij (with βii = 0) is the increase in Li due
to a (unit) change in Lj . If we assume that most
species are close to their adaptive peaks, any evolu-
tionary change in one species will have a deleterious
effect on the rest of species. The time continuous

equivalent formulation of this model is

dLi
dt

=
S∑
j=1

βijkjLj − kiLi . (17)

By taking the average in both sides of the pre-
vious equation, we obtain the following expression
for the evolution of the average lag load:

d〈L〉
dt

=
1

S

S∑
i=1


S∑
j=1

βijkjLj − kiLi

 . (18)

Assuming now that ki = k for all i = 1, . . . , S, the
average lag load equation can be written as

d〈L〉
dt

=
k

S

S∑
j=1

(Ψj − 1)Lj (19)

and it has a steady-state solution if Ψj = 1 for all
j = 1, . . . , S. In other words, if

Γ ≡
S∑
i=1

βij = 1; ∀ j . (20)

Otherwise, it can be shown that 〈L〉 will decrease
(increase) for Γ < 1(Γ > 1). The previous iden-
tity is telling us that the equilibrium state of this
system is reached through a balance between the
reduction of the individual lag load of each species
and the increases due to co-evolutionary changes
in the remaining partners. And the main result of
this model is that the Red Queen picture, in which
evolution of species proceeds at an approximately
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Fig. 8 Basic set of rules of the evolution model shown for a N = 6 species ecosystem. The first rule involves randomization of
connections (see text) followed by the extinction of some of the species (empty circles). The final step considers diversification:
We choose one of the survivors at random and copy it and its connections into the empty sites.

steady rate, is indeed feasible even in the absence
of changes in the physical environment.

There is a deep connection between this result
and the presence of a critical boundary outlined in
the previous section. As species co-evolve, their in-
teractions with other species change. Additionally,
immigration from outside the ecosystem will occur,
thus introducing further changes in diversity and
connectivity. These connections can simply change
in time or some new ones can appear or disappear,
as new ways of exploiting other species emerge or
as new specializations arise. A given tree species in
the rainforest can become resistant to some plague
or more able to disperse its seeds. A consequence
of this evolutionary adaptation will be an increase
of population size. But in a rich ecosystem, larger
populations sooner or later translate into more op-
portunities for parasites to take some profit. Larger
populations thus are only transient phenomena as
far as emerging parasites or competitors will find
their way to exploit the successful species. Increas-
ing number of connections will be unavoidable be-
cause diversity is usually linked with the emergence
of a web of interactions. But after the thresh-
old is reached, both increasing numbers of links or
changes in their strengths will lead to instability.

The system is always forced to change and species
turnover will be the rule.52

5. EVOLUTION MODEL

If we look at the large-scale pattern of species gener-
ation and extinction, as revealed by the fossil record
of life, the shape of the pattern is fuzzier and often
only reveals a small information about the under-
lying community structure and its interactions.53

The impression from our discussion about available
data is that large-scale evolution is still an open
problem. How much can we infer from the analy-
sis of the fossil record? The analysis of field data
has been complemented in recent years with several
theoretical approaches54–58 [for a recent review of
current models, see Newman and Plamer (1999)59].
Models based on either external perturbations or
internal dynamics are not new. Raup (1996) and
Sepkoski (1984) have pioneered the formulation of
both externally-driven extinction dynamics as well
as competition-dependent dynamics.60,61

Beyond the limitations implicit in the incom-
pleteness of the fossil record, the available data
provide clear indications of the relevance of the



12 R. V. Solé et al.

ecological scale.62 It seems clear that external per-
turbations have been important, but their effects
do not appear to scale proportionally to the size of
the perturbation. Some mass extinctions have more
profound effects than others,63 and cascade effects
have been reported from several well-known extinc-
tion episodes. This is the case of the collapse of
marine food chains with the end-Cretaceous phy-
toplankton crisis64 or more recently, with the ex-
tinction of megaherbivores at the end-Pleistocene.65

This last case is particularly well-documented and
shows the decline and successive extinction of many
vertebrates after the extinction of large-sized mam-
mals, which brought extensive vegetational changes.
Such changes eventually triggered the concomitant
disappearance of many other species. A well-
defined chain of ecological effects is seldom acces-
sible from the remote past, but as far as we know,
ancient ecosystems were as diverse and complex as
current ones, and the laws of ecological interactions
should be the same.66

The Lotka-Volterra equations (1) are too diffi-
cult to manage if Γ is formed by time-dependent
terms. We would like to retain the basic qualitative
approach, but shift our interest from the ecologi-
cal timescale to the speciation-extinction timescale.
In this last picture, where the structure of the net-
work of interactions is believed to play a main role,
species are represented through a binary variable:
Si = 0 (extinct) or Si = 1 (alive). The state of
such species evolves in time (now assumed discrete)
according to

Si(t+ 1) = Φ

 n∑
j=1

γij(t)Sj(t)

 (21)

with i = 1, . . . ,N . Here Φ(z) = 1 if z > 0 and zero
otherwise. Equation (21) can be understood as the
discrete counterpart of (1), but involving a much
larger time scale. In this model,67,68 the ith species
is in fact represented by the set of connections
{γij , γji}, ∀ j. The elements γij are the inputs and
define the state of the species. The elements γji
are the outputs and represent the influence of this
species over the remaining ones in the system.

The dynamics is defined in three steps:

(1) Changes in connectivity. At each time step,
each species i experiences a change in one of its
inputs j, which is chosen at random. The con-
nection γij(t) is assigned a new value γij(t+ 1)
randomly drawn from a uniform distribution in

the interval [−1, 1]. This slow change in the
global system can be ascribed either to external
causes or might be the result of modifications
due to co-evolution. With this rule, small ran-
dom changes are introduced into the network.
It should be noted that this rule involves both
external and internal perturbations. A given
keystone species that sends several positive in-
puts to others can at some point disappear as
a consequence of a strong change in one of its
input connections. Although single changes in
connections are apparently small, they can ac-
tually induce strong changes.

(2) Extinction. The local fields Fi =
∑
j γij(t)Sj(t)

are computed, and all species are synchronously
updated. If the kth species goes extinct, then
Sk = 0 and all the connections that define it are
set to zero: γkj = γjk ≡ 0, ∀j. This updat-
ing introduces extinction as well as selection of
species. In fact, those sets of connections which
make a species stable will remain. But in remov-
ing a given species, some positive connections
(mainly being outputs of k) with a stabilizing
effect on other species can also disappear, and
this renders the system more unstable.

(3) Replacement. Some species are now extinct and
empty sites are available for colonization. Di-
versification is introduced as follows. A living
species is picked up at random and “copied” in
the vacant spaces. The new species are identical
to the one randomly choosen: note that after
their origination, our rule (1) causes their dif-
ferentiation. Let Sc be the parent species. For
each extinct species Sj (vacant spaces), the new
connections γij and γji are given by γkj = γcj
and γjk = γjc. In this way, the new species
are the result of the speciation of one of the
survivors.

6. CRITICALITY AND
UNPREDICTABILITY

In this section, we analyze the way in which the
critical state is reached and the interpretation of the
resulting dynamical pattern. The random changes
in the network of connections, together with the
non-trivial correlations introduced through the re-
placement step, make the trophic links between
species more and more complex. We can quantify
their complexity by means of an adequate statistical
measure, as follows. Let us first consider the time
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time

local field

20 151015
Fig. 9 Evolution towards the instability (left margin). We
represent the evolution of the local fields for a system with
200 species after the transient, and for 400 time steps. Time
runs from bottom to top, and the horizontal axes varies be-
tween 0 (extinction threshold, left side) and 200 (right side).
The color code stands for the number of species with a given
value of the local field (black corresponds to non-represented
values of the local field). This simulation corresponds to
the model of Sec. 5 [as described in Manrubia and Paczuski
(1998).14].

evolution of the connections. We call P (γ+) and
P (γ−) = 1− P (γ+) the probability of positive and
negative connections, respectively. The time evolu-
tion of P (γ+, t) is defined by the master equation

∂P (γ+, t)

∂t
= P (γ−, t)P (γ− → γ+)

−P (γ+, t)P (γ+ → γ−) . (22)

From the definition of the model, we have a
transition rate per unit time given by P (γ+ →
γ−) = P (γ+ → γ−) = 1/(2N) which leads to
an exponential relaxation P (γ+, t) = (1 + (2P0 −
1) exp(−t/N))/2, where P0 = P (γ+, 0). This result
is immediately reflected into an exponential decay
in the local inputs, Fi(t) ∝ exp(−t/N). As a result,
the system evolves towards a critical state where the
global input coming from the co-evolving partners
has a value close to zero, and thus small changes
involving single connections can trigger extinction
events.

We can use the entropy of connections per
species, i.e. the Boltzmann entropy

H(P (γ+, t))

= −P (γ+, t) log(P (γ+, t))

− (1− P (γ+, t)) log(1− P (γ+, t)) (23)

as a quantitative characterization of our dynam-
ics. The Boltzmann entropy gives us a measure of
disorder but also a measure of uncertainty.69 It is
bounded by the limits 0 ≤ H(P (J+, t)) ≤ log(2),
which correspond to a completely uniform distribu-
tion of connections (i.e. P (γ+, t) = 1 and P (γ−, t) =
0, having zero entropy) and to a random distri-
bution with P (γ±, t) = 1/2 (maximum entropy),
respectively. Our rules make possible the evolution
to the maximum network complexity, here charac-
terized by the upper limit of the entropy.

The entropy H(P (γ+, t)) grows, after a large ex-
tinction event, towards its maximum value H∗ =
log(2), with sudden drops near large extinctions.
This means that our system slowly evolves towards
an “attractor” characterized by a randomly con-
nected network. At such state, small changes of
strength 1/N can modify the sign of Fi and extinc-
tion may take place. At this point, one clearly sees
what is the role that external perturbations play.
For them to trigger a large extinction, it is necessary
that they act on a system located close to the crit-
ical state (here, the network close to the maximum
entropy). A large extinction will never be found in
a system with a low entropy of connections even if
the external perturbation is reasonably large. This
is a key property of self-organized critical (SOC)
systems.70 More specifically, an SOC system has
an order parameter that defines the transition dis-
played by the system (in our case the change from
no-extinctions to extinctions) as a continuous phase
transition. This order parameter has been shown to
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be the extinction rate, while the control parameter
is the average value of the connections 〈γij〉.68 For
〈γij〉 > 0, no extinction will be found for a large
enough system, while for 〈γij〉 < 0, extinctions of
all sizes (up to system size) can be found.

Several of the features observed in the fossil
record are reproduced with a good accuracy by
our model. First, a wide distribution of extinction
events is obtained.b It has a power-law profile of
the form p(E) ≈ E−τ with τ = 2.05±0.06, which is
consistent with the information available from the
fossil record.32,35,71

Second, due to the replacement of extinct species
with surviving ones, the species tend to form groups
with similar local field Fi. If we consider a snap-
shot of the system at time t, we observe several
such groups containing different numbers of species,
and separated by empty intervals without species
(in the Fi-space). Subsequent evolution shows that
these groups are long-lived entities which keep a
fairly constant number of species (up to extinc-
tions and new originations from time to time) for
a long time. These groups can be identified with
a higher level in the taxonomical hierarchy, namely
genera. The computation of the number of genera
G(S) formed by S species returns the dependence
G(S) ∝ S−2,44,73 which is in good agreement with
part of the measurements on real taxonomy.33 As a
consequence, the taxonomical “classification” might
be a result of the self-organization inside the system,
of the correlations arising from the very dynamical
rules, and even an unavoidable output of the evolu-
tionary process.

Also the Red Queen effect discussed in Sec. 4 has
its counterpart analyzed in this model. Consider a
system formed by a large number of species which,
due to the replacement rule, would be sponta-
neously grouped into a variable (still large) number
Gt of genera, as discussed previously. We can de-
fine a “pseudocohort” in our system as the num-
ber of genera G0 present in the simulation at time
t0, and follow its evolution. It is easy to compute,
at each time step t > t0, how many of the initial
genera still have at least one species present in the
system. In Fig. 10, we plot different curves corre-
sponding to time steps t1 < t2 < · · · < t10 in a
system with S = 2500 species. The number of gen-
era initially present in each of the ten curves varies
between 16 and 163. The almost linear decay in
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Fig. 10 Survivorship of genera in the evolutionary model
described in Sec. 5. Each line starts with all the genera
present in the system at that point in time, and shows the
remaining survivors as evolution proceeds. Mass extinctions
appear as drops in survivorship and are very reminiscent of
the pattern observed in the fossil record. Each point corre-
sponds to an average of over 100 time steps.

the log-linear plot, punctuated by large extinction
events, very much resembles the pattern observed
in the fossil record.71

7. SUMMARY

We have analyzed the presence of instability points
in three different types of models. Our main point
was the observation that complex ecologies involve
complex patterns of interaction that might be in-
terpreted in terms of critical states. Several sets of
evidence from field studies give support to the view
of real ecologies as complex systems poised close to
marginal stability boundaries.

A very important consequence of this marginal
state is that close to instability points (where
typically scaling of relevant quantities appears),
fluctuations play a leading role. The relaxation
time towards equilibrium (even in the presence of
a very small driving) becomes very large and in
this context the final outcome of ecological inter-
actions can be extremely delayed. What is the con-
sequence of this long-transient behavior? The main
consequence is that marginal stability might be the

bAlso the model by Newman and Roberts, which considers external causes to be the main motor generating extinction events,
returns an exponent compatible with field data,58,72 while other models give values clearly different: τ ≈ 1.1 for the quenched
Bak-Sneppen model,55 and τ = 1 for Kauffman-Johnsen’s one.54



Fractal Nature of Ecological and Macroevolutionary Dynamics 15

final cause of large diversity in natural ecologies.
The reason is that, together with the driving, the
extremely long transient times (which would even-
tually eliminate some species from the system)
are in fact only counter-balanced by immigration/
speciation events. This would explain the fact that
a very large number of rare species is always present.
These rare species are not eliminated because large
fluctuations close to the marginal state imply the
propagation of effects through the whole network
in a highly unpredictable way.

ACKNOWLEDGMENTS

The authors thank Mike Benton, Brian Goodwin
and Per Bak for interesting discussions on critical-
ity and evolution. This work has been supported
by grants DGYCIT PB97-0693 and CIRIT 1999FI
00524 UPC APMARN (DA). Jordi Bascompte was
a Postdoctoral Associate at the National Center for
Ecological Analysis and Synthesis, a center funded
by the National Science Foundation (grant DEB-
94-21535), the University of California at Santa
Barbara, and the State of California. Susanna C.
Manrubia acknowledges support from the Alexan-
der von Humboldt Foundation.

REFERENCES

1. J. M. Smith, Phil. Trans. R. Soc. Lond. B325,
241–252 (1998).

2. S. A. Pimm, Food Webs (Chapman and Hall, Lon-
don, 1982).

3. D. Kenny and G. Loehle, Ecology 72, 1794–1799
(1991).

4. G. A. Polis and K. O. Winemiller (eds.), Food Webs.
Integration of Patterns and Dynamics (Chapman
and Hall, New York, 1996).

5. R. M. May, Nature 238, 413–414 (1972); Stabil-
ity and Complexity in Model Ecosystems (Princeton
University Press, Princeton, 1973).

6. D. Tilman and J. A. Downing, Nature 367, 363–365
(1994).

7. S. A. Pimm, Nature 307, 321–326 (1984).
8. P. Yodzis, Introduction to Theoretical Ecology

(Harper and Row, New York, 1989).
9. L. Stone and A. Roberts, Ecology 72, 1964–1972

(1991).
10. D. G. Raffaelli and S. J. Hall, “Assessing the Rela-

tive Importance of Trophic Links in Food Webs,” in
Food Webs. Integration of Patterns and Dynamics,
eds. G. A. Polis and K. O. Winemiller (Chapman
and Hall, New York, 1996).

11. K. McCann, A. Hastings and G. R. Huxel, Nature
395, 794–797 (1999).

12. E. L. Berlow, Nature 398, 330–334 (1999).
13. P. C. de Ruiter, A. Neutel and J. C. Moore, Science

269, 1257–1260 (1995).
14. D. Ratcliffe, New Scientist 8, 457–458 (1979).
15. J. E. Cohen, F. Briand and C. M. Newman,

“Community Food Webs’99,” in Biomathematics,
Vol. 20 (Springer-Verlag, New York, 1990).

16. F. W. Preston, Ecology 43, 185–215 (1962).
17. E. C. Pielou, An Introduction to Mathematical

Ecology (Wiley-Interscience, New York, 1969).
18. R. Margalef, La Biosfera Entre la Termodinámica y

el Juego (Omega, Barcelona, 1980).
19. D. Tilman, Oikos 58, 3–15 (1990).
20. D. Tilman and P. Kareiva, Spatial Ecology. The Role

of Space in Population Dynamics and Interspecific
Interactions (Princeton University Press, Princeton,
1998).
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37. M. J. Benton, Science 268, 52–58 (1995).
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