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Monte Carlo simulations suggest that dimensionless ratios of cumulants for the height
of the surface depend on how randomness is used.
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Cumulant ratios! play an important role to find critical points and to determine uni-
versality classes at second-order phase transitions. Recently, Derrida and Appert?
applied this concept to the dynamical autocorrelations of the average velocity in
the asymmetric simple exclusion process similar to the Kardar-Parisi-Zhang (KPZ)
equation® for surface dynamics, and found their Monte Carlo data to be consistent
with their analytic solution. The present note checks if the 40 year old Eden model?
also agrees with the theory. All these simulations are restricted to one space and
one time dimension, where length L and time ¢ scale® as t L3/2 and the surface
thickness as VL.

We simulate L x L, square lattices (with helical boundary conditions in hor-
izontal direction) where the horizontal axis of length L gives the space while the
vertical axis of length L, is the time. Initially, the bottom line is occupied while
the rest of the lattice is empty. Then, for each time step (¢ — t+ 1), L surface sites
(= empty neighbors of occupied sites) are selected randomly and sequentially, and
become permanently occupied. We look at the height h(t) above the bottom line,
averaged over all these surface sites. Numerically it is practical to subtract the time
from this growing height since at each time step the height grows on average by one
lattice constant, in the stationary state. The algorithm is based on the Fortran pro-
gram published in Ref. 5; Ref. 6 gives a general review of cluster growth. (When the
topmost surface site touches the upper lattice boundary, the whole configuration is
shifted downward until the lowest surface site touches the lower lattice boundary.)

*Permanently at: Institute for Theoretical Physics, Cologne University, D-50923 Koln, Germany.
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large scale evolution may be sufficiently robust or universal to be captured by an
abstract, mathematical model. Bak and Sneppen!! introduced a self-organized cri-
tical model of coevolving “species” where the least fit undergoes pseudo-extinction
and affects the fitness of other species in the ecology, leading to extinction events of
all sizes. However, their dimension-independent lifetime distribution Pjge(t) ~ 1/ 6.7
is in disagreement with Raup’s®® paleontological data. More importantly, their
model lacks any emergent taxonomic structure, which is an essential part of large
scale organization in evolution.

Here we show that these three, seemingly unrelated distributions for extinction
event sizes, genera sizes, and genera lifetimes, which characterize the large scale be-
havior of evolution, can be unified in terms of a simple mathematical process. We
introduce an abstract model for large scale evolution and study it both analytically
and numerically. In our model, surviving species can diversify into ecological niches
left by previous extinction. This is implemented in terms of a Polya urn type of pro-
cess. All species are subject to a general drift over time to lower viability which even-
tually leads to their extinction. This is consistent with the view that most changes in
the ecology have a deleterious effect on currently existing species. In addition, due to
interactions between species they experience changes in their viability, either favor-
able or unfavorable, arising from previous extinction of other species in the ecology.
Species in our model organize themselves into genera of all sizes. The emergent gen-
era obey a general Age and Area! relation which we find is linear (s ~ t) in contrast
to Yule’s? conjecture Ins ~ t. This large scale organization of species provides a
simple mechanism which shapes all three probability distributions into a power law
P(r) ~ 1/x?, where z is the extinction event size, genera lifetime, or genera size. In
all three cases the 1/z2 behavior is consistent with previously reported paleonto-
logical data,3%%9 indicating that our model may plausibly describe a universality
class sufficiently broad to include real evolution. It can be tested further by directly
comparing the age and size of extinct genera with our result that on average s ~ t.

Our model was inspired, in part, by considering a more complicated “connec-
tion” model introduced by Solé and Manrubia.}? The advantage of our model is
that it is extremely simple and robust. Its simplicity makes it easier to study large
systems numerically; it is also analytically tractable. That such a simple model ex-
ists which describes a process giving large scale organization in evolution together
with the above mentioned distributions is significant we think because it illustrates
a potentially universal mechanism that would apply even beyond the context of
biological evolution discussed here.

We begin by briefly describing the connection model. An N x N interaction
matrix W defines the interaction, either favorable or unfavorable, between N objects
that represent species. For a species 4, the output elements W;; define its affect on
the other species 7, while its viability is the sum of its input elements v(i) = ) i Wi
If Wj; > Wi, then species j has a more beneficial effect (and species k£ has a more
deleterious effect) on the ability of species ¢ to survive. If the viability v(i) < 0, then
species i goes extinct, and the connection elements of the rows and columns for that
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Fig. 1. Dynamics of the model. The horizontal axis is the viability and the blocks represent
species. The dotted line is the extinction threshold. (0) Initial configuration. (1) Leftward stochas-
tic drift. (2) Extinction and replacement. (3) Coherent influence to the survivors. Here the extinc-
tion had size s = 5 and the influence of the extinction had value ¢ = —2. The species that move
at each step are shaded.

.

extinct species are replaced with a copy of the corresponding elements of another
surviving species. This copying in turn changes the viability of other species, and
leads to a chain reaction of extinction events. The system is driven by slow random
changes in the matrix W which tend to lower the viability of the surviving species,
and slowly differentiate copies from each other leading to speciation. They observed
that the connection model exhibits extinction events of all sizes where the species
that go extinct together tend to be recent copies.

In our one-dimensional model we assign to each of N particles that represent
species an integer viability v(¢). The dynamics consists of three steps as illustrated
in Fig. 1:

(1) species drift stochastically to lower viability;

(2) species with viability below a threshold v. become extinct. The extinct species
are each replaced with a “daughter” speciation of a surviving species. This is
the Polya urn mechanism in our model; .

(3) Due to interactions between species the surviving species receive a change in
their viability resulting from the extinction event.

Specifically, at each time step the following operations are performed in parallel
for all species (i): (1) with probability 1/2, v(i) = v(¢) — 1; otherwise v(4) is un-
changed; (2) for each ¢ such that v(i) < v. a surviving species (j) with v(j§) > v, is
selected at random and v(Z) = v(j). This step represents a speciation event where
one species branches into two. (3) all N — s species that survived extinction receive
a coherent influence ¢(s), so that v(j) = v(j) + ¢(s). After an extinction event of
size s, g(s) is chosen from the uniform distribution —s < g(s) < s. Thus, only large
extinctions can cause large subsequent changes in the ecology. The form of ¢(s)
is elaborated on later. It is important to note that, unlike the connection model,
our model’s behavior is robust with respect to varying the parameter v, since the
entire system is translationally invariant in viability.

Our model can be viewed as an example of transport in one dimension, where
particles are conserved. In the steady state the smooth drift of species toward lower
viability will be balanced by the intermittent replacement of extinct species with
speciations of surviving ones, which by definition have higher viability. The average
viability in the system ¥ = (1/N) 3" v(¢) exhibits stick-slip behavior as shown in
Fig. 2, similar to the behavior observed in the connection model.'?
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Fig. 2. The average viability as a function of time in a system of size N = 1000 exhibiting stick-
slip dynamics. The steep jumps, or slip events, are followed by slow relaxation to the threshold
for extinction. The insert shows the temporal sequence of extinction event sizes over the same
interval.

Due to replacement of extinct species with speciations of surviving ones, the
species tend to form groups with similar viability, which drift and diffuse together
toward the extinction threshold. The state of the system may be characterized by
n(v,t), the number of species of viability v at time ¢, where Y, n(v,t) = N. A
snapshot of the system is shown in Fig. 3. At a microscopic scale, n(v,t) is peaked
with well defined bumps that give rise to the temporally intermittent sequence of
extinctions as shown in the insert of Fig. 2.

We can identify all species within each bump as members of the same genus
for the following reasons: Each viability bump is separated from the others by an
empty interval where n(v,t) = 0. Since these empty intervals cannot be filled by
the replacement of extinct species with speciations of surviving ones, the dynamics
tends to maintain the sharp separation between different bumps. Therefore, they
are long-lived metastable entities. By making a histogram of the genera sizes, or
area under each bump, observed in snapshots at spaced time intervals we find a
power law for the number of species within each genus as shown in the insert
of Fig. 3 with an exponent 7 ~ 2. Also, the total number of genera in the system
displays an intermittent pattern of diversification (increase) and contraction in time,
qualitatively similar to real data.'?

The age of a newly created species following extinction is set to zero, and incre-
mented by one unit at each step in the simulation. The age of a genus is the age
of the oldest species in the corresponding bump. When a bump passes through the
extinction threshold v., we measure its age ¢ and size s (or area). The distribution
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Fig. 3. A snapshot of the viability profile n(v,t) in a system of size N = 400. The pattern is
intermittent with both small and large bumps. The insert shows the distribution of genera sizes
averaged over a total time interval of 107 steps with a snapshot taken every 100 time steps for a
system of size N = 1000. The curve can be described as a power law with a cutoff at the system
size.

of sizes of extinct genera is the same, within numerical accuracy, as the snapshot
distribution described above. We numerically determined the relation between the
age and size of extinct genera in a system of size N = 1000 including 107 time
steps, and found a linear relation t = ms, with m ~ 0.6. This numerical res' 't
indicates that emergent genera on average grow at a constant rate irrespective of
their size. The numerical result T = 2, then implies 7, = 2, in agreement with real
data. Data collapse of the distribution of extinction event sizes for different system
sizes also indicate a power law with exponent Texy = 2, as shown in Fig. 4. Note
that at the beginning of the numerical simulation, with random initial conditions,
there are only small extinctions and small genera. Thus the power law distribu-
tions observed in the steady state are “emergent”; they are consequences of the
self-organized critical dynamics of our model.

The first step in our model, drift to lower viability, takes into account slow
random mutations of the matrix elements W;; in the connection model that tend
to lower the viability of all species. This slow external driving, similar to that used
in earthquake models,'* represents the cumulative effect on species of small changes
in the environment, which we propose tend to make species less able to maintain
their population over time. The second step represents true extinctions of species.
The third step represents the effect of these extinctions on the surviving species.
For more details see Ref. 15. Our preliminary results indicate that the connection
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Fig. 4. Data collapse result. P(s, N) is the probability of having an extinction event of size s in
a system of size N. The plateaus for different system sizes show that P(s, N} = F(s/N)/s? where
F(z) is a simple scaling function which is constant for z < 1 and approaches zero as x — 1. This
agrees with our analytic result that Text = 2.

model also exhibits emergent genera with a broad size distribution, intermittent
diversification, as well as an Age and Area relation.

We now discuss the analytic results for the transport model. In the stationary
state, Puy(s) is the probability distribution to have an extinction event (avalanche)
of size s and G(q) is the probability distribution to have an influence of size g.
These distributions are self-consistently related via

o= Y, =l )
all s>¢q
q—-1
Peou(s) = > G(@)3 | Y aw),s ], (2)
all ¢ =0

where 7(v) is the time averaged viability profile in the steady state. The first equa-
tion is exact. The second assumes that the avalanche distribution comes from influ-
ences, g, on the time average viability profile, rather than the actual time dependent
profile. The extinctions and influences are treated in terms of their full probabil-
ity distributions, while the viability profile of species is treated only in terms of
its average. This can be justified a posteriori in terms of a separation of scales
argument similar to singular diffusion.'6

Next, we assume that the cumulant of n(v) is not singular around v = 0, so
that it has a Taylor series expansion. In the interval 1 « ¢ <« N, where N — oo,
f ? (v)dv = Aq+ . ... Combining Egs. (1) and (2) with the Taylor series expansion
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gives
dG(q)
dgq

n\M\EQA v for 1< g« N. (3)

It is easy to show that Eq. (3) has a scaling solution G(g) ~ ¢ 7= where In(27ex) =
(Texs —1)In A. Also the avalanche and influence distributions are asymptotically the

same; Poxi(g) ~ G(g)-
The steady state equation for the time average profile is

Mu 3 MM.MH (A + q) + 7w + g + 1))

8=0 q=—38

~

! §Pexi(s)

N-—s
3=0

—cv/N

+ = (n{v) + a(v + 1)) 4)

N =

For large N, we try the solution n(v) = nee and find to leading order in N

oxo 1:~ N .ww cxn
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Expanding for ¢ < N, the ¢ = 0 part of the first term on the right hand side
gives 1 — (c/2N). The leading part cancels the number one on the left hand side of
Eq. (5), and the negative remainder which comes from the drift must be cancelled
by the remaining terms in the equation. Completing the expansion in g, only the
even terms survive the symmetric sum over g. These terms are all positive as is
the last term in Eq. (5). From Eq. (3) all of these positive terms scale ~ N177Tex.
Only when 7 = 2 can the positive terms cancel the only negative term (—c/2N).
In this case, a consistent solution exists for the exponential profile. Our numerical
simulation results show that the average profile is indeed exponential with ¢ ~ 6
with A ~ 4, both confirming 7oy = 2. .

Note that our theory thus far has removed genera bumps by only treating the
time average profile. The weak In N divergence of both the average size of influences
and average size of extinction events justifies our separation of scales assumption
for large N. Since the shifts are small relative to N, only a finite number of genera
on average pass the extinction threshold following an extinction. Then 7 = 7 = 2,
in agreement with the numerical simulation result. Finally, previous interpretations
of available data from the fossil record for extinction size distributions, genera (and
higher order taxa) abundance distributions, and lifetime distribution of genera are
consistent with our unified result in terms of a simple model that they are each
decaying power laws with exponent 2.
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the assumed diffusion law (r?) o t* is shown. Note the large number of ants which
are necessary to obtain good values when deriving numerically here.

Considering this, I tried to fit lines to these graphs taken into account their
behavior for times 103 to 10® assuming their linear continuation and visually sub-
tracting the oscillations.

Reducing error bars in the phase diagram will take much more computational
effort since we consider the behavior on logarithmic time scales.

In summary, the behavior in two dimensions is similar to that in three,* but we
also have determined a full phase diagram (Fig. 2). Analogous work on topological
bias is in progress.
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A mathematica) model of interacting species filling ecological niches left by the extinction
of others is introduced. Species organize themselves into genera of all sizes. The size of a
genus on average grows linearly with its age, confirming a general relation between Age
and Area proposed by Willis. The ecology exhibits punctuated equilibrium. Analytic
and numerical results show that the probability distribution of genera sizes, genera
lifetimes, and extinction event sizes are the same power law P(z) ~ 1/z?%, consistent
with paleontological data.

Keywords: Evolution; Connection Model; Age and Area; One-Demensional Model.
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Many years ago, Willis noted that genera could be composed of many species or
of only one; he noted that similar regularities in the statistical properties of genera
occurred whether one is studying flowering plants or e.g., beetles. Attempting to
formalize these observed regularites, he postulated a relation between the age and
size of a genus, “Age and Area,” which states that older genera on average include
more species than younger ones.! With Yule he noted a power law relation for
the number of genera with s species, Pgen(s) ~ 877 with 7 approximately 2.1:2
Recently, Burlando® observed scaling behavior across the taxonomic hierarchy also
giving 7 ~ 2 (see in addition Ref. 4). Similarly, the distribution of life times, ¢, of
fossil genera® can be described by a power law Hige (t) ~ 1/t™ with 7 =~ 2.5 When
viewed at sufficiently large time scales, the pace of extinction itself is episodic with
long periods of stasis interrupted by sudden bursts of mass extinction.® Punctuated
equilibrium with scale-free extinctions has been attributed? to the self-organized
criticall® dynamics of strongly interacting species, without the need for catastrophic
exogenous causes such as meteorites. The punctuated equilibrium process governing





