JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. B12, PAGES 27,407-27,420, DECEMBER 10, 1997

Aftershock series of event February 18, 1996:

LS S TN

An interpretation in terms of self-organized criticality

Antoni M. Correig, Merce Urquizy, and Josep Vilal

Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Spain

Susanna C. Manrubia

Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Spain

Abstract. An aftershock interevent time series, initiated on February 18, 1996,
in the eastern Pyrenees was analyzed. The threshold detection magnitude was set
at 1.9, and the series was assumed to be complete for an interval of 77 days. The
original time series does not fit Omori’s law, probably because of sudden changes in
the rate of occurrence, interpreted as an increase in the production rate. When the
recorded interevent time series is classified in terms of leading aftershocks (those
that satisfy a relaxation process) and cascades (those occurred at a nearly constant
rate), the new time series of the leading aftershocks fits Omori’s law quite well, with
» = 0.94. Interpreted in terms of Dietrich’s model, the series of leading aftershocks
correctly predicts a return time for the main shock of the order of 50 years. To
interpret the series of cascades, a minimalist, self-organized critical model was used.
Although it is very simple, the model correctly reproduces the two-level structure
in the observed time series, that is, the sequence of leading aftershocks and a
cascade sequence emerging from each aftershock. This model may be given physical
justification in terms of the Cochard and Madariaga [1996] nucleation model.

1. Introduction

Large earthquakes are in general followed by a se-
ries of events of lower magnitude, localized at the same
place and with similar focal mechanisims. These events
are called aftershocks. In their recent hook on global
seisinology, Lay and Wallace [1995, p. 385] refer to af-
tershocks as follows:

Nearly all large carthquakes are followed
by a sequence of smaller earthquakes,
known as aftershocks, which are appar-
ently related to the fault plane that
slipped during the main event. The large
earthquake, known as the main shock, -
troduces a major stress adjustiment to a
complex system by its sudden slip. Re-
gions between the rupture zone, or ad-
jacent to it, may require adjustment to
the new stress state in the source vol-
ume, thus generating aftershocks. Af-
tershocks typically begin immediately af-
ter a main shock and are distributed
throughout the source volume. Typically,
the frequency of occurrence of aftershocks
decays rapidly following Omori’s law,
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according to which the rate decay of aftershock se-
quences is proportional to t 71, where ¢ is the lapse time
from the main shock. With respect to the origin of
aftershocks, Lay and Wallace [1995, p. 385] state "Af-
tershocks are clearly a process of relaxing stress concen-
tration introduced by the rupture of the nmiain shock.”
In other words, we can contemplate the series of af-
tershocks as a nonstationary (relaxation) point process
that presents some kind of clustering. Since the end of
the last century it has been known that the decay of
aftershock activity is well represented by Omort’s law,
one of the few firmly established empirical laws i seis-
mology. For a historical review on Omort’s law and
its application, see [Ulsu el al. [1995, and references
therein]. As noted by the above mentioned authors,
Omori’s law is unique in the sense that it displays a
power law dependence on time with no presence of any
characteristic timescale as a relaxation time.

However, the fit of observed aftershock series to Omo-
ri’s law is only approximate, since the observed series
does not show a smooth relaxation, that is, a grad-
ual decrease of the event rate. A sudden increase in
the event rate can be explained in terms of the occur-
rence of a new series of aftershocks, beginning with an
event of larger magnitude than the preceding events and
thus initiating a branching process. Then, the observed
series can be simulated as a superposition of several
Omort’s series shifted in time. This superposition of af-
tershock series, known as epidemic type aftershock se-
yuence (ETAS), was studied in detall by Ogata [1988].

On the other hand, observed aftershock series have
also been fitted by several aunthors to other relaxation

27,407



27,408

laws, exponential laws for instance [e.g., Kisslinger,
1993: Marcellini, 1995], but no physical models have
been developed to justify the alternative relaxation laws,
as in the case of Omorl’s law.

The present paper has been written under the as-
sumption of the validity of Omori’s law, considered a
universal feature of the aftershocks occurrence. Once
accepting the validity of Omori’s law, the results pre-
sented in this paper should be understood as the fine
structure of the process of nucleation.

The purpose of the present paper Is to look for an
explanation of the interevent time series of the after-
shocks that followed the event of February 18, 1996, in
the eastern Pyrenees. Apparently, the series of after-
shocks under study do not follow Omori’s law, due to
the presence of sudden changes in the occurrence rate
and to a lack of large events that would justify the use
of an ETAS model. In order to explain these discrep-
ancies, a different point of view has been adopted. The
observed series has been separated into two classes of
events, the first including those that strictly follow a
relaxation process, the leading aftershocks, and the sec-
ond containing the rest. The latter are termed cascades
and can be described as series of events taking place at
a higher rate. Because of the difficulties of applying two
different friction laws in order to explain the observed
complex time behavior, we have tried to give an alter-
native explanation in terms of self-organized criticality
(SOC), which, as will be shown, correctly predicts the
observed time series of occurrence of aftershocks.

The plan of the paper is as follows. In section 2 we
briefly summmarize the physical basis underlying the uni-
versality of Omori’s law. Section 3 is devoted to the
analysis of the observed series of aftershocks and 1ts
usual interpretation in terms of directly fitting Omori’s
law to the raw data. In section 4 a new approach to the
study of aftershocks is suggested, based on the separa-
tion between leading aftershocks and cascades. In sec-
tion 5 we introduce a mninimalist model based on SOC!
behavior, explain our new approach, and summarize the
main numerical results. Finally, section 6 is devoted to
the discussion of the methods we have applied and the
results.

2. Physical Basis of Omori’s Law

The modified Omori’s law [Uisu, 1961]. cited by Ulsu
et al. [1995], 1s expressed as
N
= ———, 1
n(t) Tror (1)

where n(t) is the occurrence rate of aftershocks, f 1s
time, and A, ¢ and p are constants. The cumula-
tive number of aftershocks N (1), defined as N({} =

j(: n(s)ds 1is
K [ett =10 — (¢ +1)tt=7)]
(r=1

The physical basis for the power law decay of after-
shocks with time have been established through two dif-

N(t) =

(2)
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ferent points of view: the continuous nmodels developed
by Yamashita and Knopoff [1987], Shaw (1993}, and Du-
ctrich [1994] and the discrete models developed by Bur-
ridge and Knopoff (1967} and Ito and Matsuzak: [1990].
among others (for a review see Shaw [1993]).

Yamashita and Knopoff [1987] assumed, first, that
the stress corrosion cracking is the physical mechanism
for the delayed fracture in aftershocks and took into
account the geometrical complexity of earthquake frac-
ture zones, that is, aftershocks cannot occur without
the presence of stress inhomogeneities, which cause the
highly irregular slip during rupture. As a second as-
sumption, they introduce beforehand a power law dis
tribution of crack sizes with a power law for the rat
of growth of the cracks. Under both hypotheses, th
probability density of occurrence tine of aftershocks 1s
found to obey Omori’s law.

Shaw [1993] and Dietrich [1994] describe the occur-
rence of an event by means of deterministic dynamics for
the nucleation. The terni earthquake nucleation is usec
to describe the process that leads to the initiation of a1
carthquake instability at some specific place and time.
Shaw [1993] attributes the distribution of time delays
of aftershocks to the acceleration of stress during nucle-
ation and to the fast redistribution of stresses during an
event and assumes a nucleation velocity proportional to
a power law. On the other hand, Dietrich [1994], mo-
tivated by laboratory friction experiments, formulates
the nucleation of an event in terms of a general nonlin-
ear friction law and assumes that the earthquake rate
i due to the elastic stress change associated to prior
carthquakes.

Dietrich [1994], in deriving his model for the rate of
earthquake occurrence, presents a specific prediction of
the model: the mean earthquake recurrence time. This
paramieter can forecast the average time between large
events in the zone under study. The selsmicity rate as
a function of time after the stress step is expressed as

/7y
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where R is the seisinicity rate, r the reference seisiicity
rate, 7, and 7 the stressing rate prior to and following
the stress step, A7 the earthquake stress change, A a
fault constitutive parameter, ¢ the normal stress, f tine
and t, the characteristic relaxation tume for selsmicity
o return to the steady state, that is, the aftershock
duration. Equation (3) gives Omiori’s law for t/t, < 1.
Dietrich [1994] shows that the mean earthquake recur-
rence time {, can be approximated as
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then (3) can be integrated to obtain the cumulative
function

exp(t/CY+ B

F(t):T(_rln{ 3B

},—lgBSO (5)
which can be fitted to data to obtain ¢, and ¢,.

A different approach for the study of earthquake oc-
currence was devised by Burridge and Inopoff [1967],
who used a one-dimensional (1-D) block-spring model
to simulate stick-slip rupture and showed that after-
<hocks occur if linear viscous friction is introduced; even
in this 1-D case, the decay of aftershock activity is ap-
proximated better by Omort’s formula than by a stmple
exponential decay. The decay law of aftershock activity,
ax predicted by the Burridge and Knopofl model, criti-
cally relies on the friction law. This model was further
extended to 2-D by several authors. Nakanushi [1992]
was able to obtain in a natural way the series of after-
shocks following a main shock and obeying Omori’s law.
whereas the series of main events obey the Gutenberg-
Richter law:; this model consists of a two-dimensional
Farth’s crust which is assumed to be driven by a viscous
finid flow under the crust. In all these models, Omori’s
power law is obtained under the hypothesis of power
law distribution of fields or in terms of a nonlinear fric-
tion law, both assumptions supported by observational
evidernice.

From another point of view, Bak and Tang [1989]
e modeled the seisimnicity as a critical phenomenon and
demonstrated that slowly driven dynamical systems
with many degrees of freedomn (such as the block-spriug
models) may naturally self-organize close to a critical
state of the system [Bak ef al. 1988]. In the present
case, we would consider the crust as a dynamical sys-
tem that slowly accumnulates stress.  This stress will
later be dissipated in the form of avalanches without
a characteristic size. Each sudden avalanche 1s assimi-
lated to an earthquake, and the lack of a characteristic
scale accounts for the Guttenberg-Richter law.

The behavior of such systemns, known as self-organized
critical models, 1s usually simulated by means of a cel-
lular automaton. The simplest physical model for self-
organized criticality is the paradigmatic pile of sand:
grains of sand are randomly dropped on the top of
the pile until the slope attains the critical angle of re-
po-o. At this point, the critical state has been reached
an any additional sand grain will trigger sand slides
(av -lanches) of various sizes. The frequency-size dis-
trit ntion of sand slides has been found to obey the
Guitenberg-Richter law. In a recent paper, Bak ef
al. [1994] showed that SOC models and block-spring
mo ‘els can be directly related. As in the case of the
Bu: ‘idge and Kuopoff model, early SOC models were
not able to spontaneously generate aftershocks unless
sol- modifications are introduced into the model, as,
for example, that of Tte and Matsuzaki [1990]; these au-
thors assimilate the occurrence of aftershocks to what
= they called a model of entropy relaxation, according to
which the main shock will disturly the strain distribu-
n, instead of the stress distribution, as considered in
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the other models.  Barriere and Turcolle [1994] con-
sidered a 2-D cellular-automaton model with a frac-
tal distribution of sizes for the grid of boxes; their
model triggered aftershocks that did not obey, how-
ever, obey Omori’s law. Y. Huang et al. (Precur-
sors, aftershocks, criticallity and self-organized critical-
ity, http://xxx.lanl.gov/abs/cond-mat /9612065, 1996),
modified Barriere and Turcotte’s model by adding the
characteristics of the sand pile model of Bak and Tang
[1989]; in this model the big earthiquakes are followed
by aftershocks that do obey Omort’s law.

3. Data

On February 18, 1996, a local magnitude M, = 5.2
earthquake occurred in the eastern Pyrenees. Accord-
ing to Rige et al. [1997], the focal parameters are as
follows: origin time = 0145:45 UT, epicentral location
=3D N42°47.81" - E2°32.30", with a focal depth of 8 k.
In the following two months, more than 500 aftershocks
were recorded by the French permanent Pyrencan seis-
mological network. An exhaustive report of the mamn
shock and the largest aftershocks is given by Rigo ef al.
[1997].

The series of aftershocks that followed this event was
recorded at the three-component continuous broadband
seisimic station of the Tunel del Cadi [Vila. 1997], lo-
cated at about 80 km SW of the epicentral area. Fig-
ure | shows the location of the main shock and the
Cadi seismic station (CAD). After a careful visual -
spection of 3 months of records (more than 20 Gb of
data). a series of aftershocks (that we strongly believe
to be complete for a threshiold magnitude of 1.9) was
retrieved. The series consisted of 337 events, spanning
a lapse time of 1846 hours (77 days, from February 18
to May 5, 1996) and with magnitudes ranging from 1.9
to 3.8. To assign magnitude to the events for which
agency information is not available, we derived a par-
ticular magnitude law, obtained through a nonlinear fit
of the amplitudes of our records to the M, values given
by the Laboratoire de Detection et Geophysique French
Agency.

The cumulative series of aftershocks (solid circles) 1s
shown in Figure 2, along with the amplitudes of the
events, arbitrarily normalized to 300, to be compati-
hle with the scale of the cumulative number of events.
The sudden change in slope of the cumulative curve
at 300 hiours is striking (see Figure 2a); this change is
not due to incotnpleteness of the series, and from the
point of view of the amplitude of the events, there is
no specific characteristic, nor any relevant event, that
justifies this sudden change in the event rate. Because
of this different behavior, from now on we will restrict
our attention to the series defined by the first 300 hours
(corresponding to 13 days, fromt February 18 to March
2) with a total of 308 events, as displayed in Figure 2b.
A surprising feature of this series is the change 1 con-
cavity of the cumulative curve, not correlated with any
significant event, suggesting an increase in the rate of
occurrence not justified by any relaxation process. Fig-
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Figure 1. Overall view of the Pyrenees: |. Paleozoic outcrops; 2, Mesozois and Eocene

materials; 3, Neogene sediments: 4, Faults and thrusts. The location of the seismic station is
shown by a triangle, and the large asterisk indicates the epicentral area.

ure 2¢ displays a detailed view of two series of events
with negative concavity, once defined the positive con-
cavity as that corresponding to a decreasing rate of
occurrence, as predicted by Omori’s law. Data from
Figure 3b have been fitted to the curmulative number
of aftershocks equation (2). The best fit has been ob-
tained by splitting the aftershock series into two, the
first for a time interval of 0 — 100 hours and the second
for 140 — 300 hours: no fit can be obtained for the inter-
val 100 - 140 hours. Results are displayed in Figure 3a
and Table 1. The values of p are abnormally low [Utsu
el al, 1995] and, as already stated, there is no apparent
reason for the change of activity from 100 to 140 hours.

With the aim of obtaining a better fit, an attempt has
been made to fit Omori’s law to a new series of after-
shocks, constructed with a higher magnitude threshold.
Figure 3b shows the fit of the cumulative number of
aftershocks for a magnitude threshold of 2.6; the total
nuniber of events has now been reduced to 33, and the
p value has been increased to 0.75, still too low. The fit
is good at the beginning and at the end of the series,
but between 20 and 100 hours we can still observe an
Increase in the occurrence rate.

Following Duetrich [1994], the recurrence time ¢, has
been computed through the fit of (5) to the two time
intervals presented in Table I, obtaining f. = 6.5 years
for the first interval and t, = 7.9 years for the second
interval. A comparison with a seismic catalog of the
zone under study [Surinach and Roca, 1982] reveals that
both recurrence times are 1 order of magnitude too low
with respect to that deduced from the seismic catalog,
of the order of 50 years.

4. New Approach to the Study of
Aftershocks

In the previous section we have seen a lack of fit of
our recorded aftershock series to Omori’s law and that
the changes in concavity of the curve defined by the ac-
cuniulated number of events cannot be correlated with
the presence of any large aftershock able to generate
a secondary series of aftershocks. On the other hand,
Omori's law has a physical justification in terms of a
relaxation process, implying that the time interval be-
tween successive events is a monotonically increasing
function.

The interpretation of Omori’s law as a relaxation pro-
cess suggests a way to separate the observed series of af-
tershocks into two classes: class A, for those events that
follow a relaxation law and class B for those events that
do not. The criterion to assign the events to classes A
or B is the following: if the interval of time At; between
events 7 and i — 1 is strictly larger than the interval of
time At;_, between events 1 — 1 and i — 2, then event !
belongs to class A, otherwise it belongs to class B.

Events belonging to class A are termed leading after-
shocks, whereas those belonging to class B are termed
cascades. Figure 4a shows the series of aftershocks
classified as leading events (solid circles) and cascades
(points); note that a cascade is initiated by a leading a -
tershock. Figure 4b displays the fit of the series of lead-
ing aftershocks to Omori’s law: the fit is now very good.
and the value obtained for the exponent is p = 0.94.
Figure Ha shows the series of cascades, in which the first
term of each cascade is a leading aftershock. Two char-
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Figure 2. Cumulative series of aftershocks (solid circles) and amplitudes (triangles, in arbitrary
relative units). (a) displays the Cumulative series of events for an interval of 1900 hours. Note
the abrupt decrease of the rate of occurrence at about 300 hours, not correlated with any specific
change in the amplitudes. (b) First 300 hours of activity along with the relative amplitudes.
Sudden changes of activity appear, not correlated with any change of the amplitudes. (¢) Soue

details of the change of concavity of the cumulative curve.
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Figure 3.  Fit of the first 300 hours of activity to
Omori’s law. (a) We can see that no single curve can
correctly fit the observations. (b) Detection threshold
has been raised to a magnitude of 2.6. The fit has im-
proved, but there is still considerable scatter.

acteristics are shown in this figure: (1) the cascades are
in general well approximated by straight lines and (2)
their corresponding slopes decrease with time. Since the
first term of cach cascade is a leading aftershock, we can
observe an increment in the time elapsed between suc-
cessive cascades, in good agreement with a relaxation
process. Figure 5b displays the slope of the cascades
versus the occurrence time of the leading aftershocks:
the slopes fit a power law, defined as y = 23.4 x r 0T
Up to now, no interpretation has been found for this
power law behavior.

In terins of the Dietrich [1994] model, aftershocks are
caused by the steplike change of stress that occurs at
the titne of the main shock. When the mean earthquake
recurrence time {, has been computed as predicted by
Dietrich’s model for the series of leading aftershocks.
the value obtained is t, = 47 years, in good agreement
with the observed seismicity of this zone [Surmach and
Roca, 1982: . Olivera, personal communication, 1997].

The occurrence of the series of aftershocks could be
qualitatively explained in terms of an asperity model:
a leading aftershock would initiate the breaking of an
asperity that would proceed discontinuously, at steps,
each one originating an event or a cascade. If we take
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only the series of leading aftershocks, a
Hence they can
be interpreted in terms of Dietrich’s model, thus obey-
ing a state-dependent friction law. However, if Omori’s
law is not able to explain the occurrence of cascades, a
different friction law should be derived to explain their
occurrence. that is. the appearance of events ata nearly

into account
good fit to Omort’s law is oblained.

constant time, in other words. the occurrence of peri-
odic events which nmply a constant rate friction law.
This could indeed be the case inside an asperity of fi-
nite dimensions, implying two different friction
one responsible for the initiation of the rupture of an
asperity and the other describing its rupture. The tiny
elapsed for the breaking of an asperity, which depend:
on how heterogeneous this asperity 1s, is relatively short
For examnple, for the longest cascade. initiated at 1255
Lours after the main shock and consisting of 33 events
(sec Figure 5a). the rupture time is 1.7 hours. The de-

laws.

crease in the slope of the cascades, a measure of the
slip velocity of the asperity, could be explained by tak-
ing into account that the slip velocity is a function o
the stress drop, and the average stress accumulated in
the source volume decreases in time, in the form of ra-
diated seismic waves or lost as irreversible processes.
The lack of previous observations of cascades Is prob-
ably due to the magnitude threshold currently used.
normally higher than 3, compared to the actual thresh-
old of 1.9. It is worth to point out that the magnitude
of the events that define the cascade is less than 2.5.

From the point of view of a continuous model. it is
a huge task to quantitatively model the generation of a
relaxation process able to reproduce the characteristics
displayed by the observations. Hence a different point
of view has been adopted, that of systems at the critical
point, and a simple explanation of the geometry of the
{ime series. considered as a point process, can be given
i terms of SOC.

5. Minimalist Model

Iu this section we will provide an explanation of the
geometry of the nterevent time series of aftershock oc-
currence (leading aftershocks and cascades) under the
hypothesis that this time series can be considered as
a nonstationary point process. The geometrical char-
acleristics of the observed tiine series, as displayed in
Figure 2b. consist of successive changes in concavity. As
already stated. the series of events defining a region of
negative concavity has been termed cascade, and the
first event of each cascade is the leading aftershock.
The series of leading aftershocks follows a relaxation
process that obeys Omori’s law, whereas the series of

Table 1. Fit of the Aftershock Series to Omort’s Law

Time Interval I ¢ P
0 — 100 8.6+ 0.2 02 x 1071 0.56 £ 0.01
140 — 300 13.24+0.2 0.2 x 107* 0.64 £ 0.01
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« vents that define a cascade can be fitted, in general, to
« straight line, thus implying that these events occur at
constant velocity.

We have considered a simple approach in order to get
some insight into the process of generation of leading
aftershocks and cascades, based on the assumption that
the rupture of a fault may be thought of as the result

of a critical self-organized system (for a recent review
of SOC models applied to seismology, see M amn [1996]).

Chen and Bak [1989] devised a simple toy model to
represent the evolution of a dynamical systemn which
evolves to a scale free structure, 1.e., to a self-organized
critical state. Quoting Chen and Bak [1989, p. 299],
“we believe that although the model 1s nol a realistic
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Figure 5. (a) An example of the main cascades retrieved from the original tiine series. It can
clearly be seen that they can he represented by st raight lines. (b) Once their corresponding slopes

are computed, it can be seen that they follow a potential law.

representation of any particular system, il caplures a  cleation and origin of seismicity developed by Coch.
general scenario for the emergence of scaling behavior, and Madariaga [1994, 1996].
Let us define a cellular automaton consisting of a

and may provide a guideline for systematically explor-
ing a variety ... of phenomena in nature.” We will show regular two-dimensional lattice where the cells (sites)
active, passive or

that this is indeed the case and that this model can be
related to the flow of seismicity through the model of nu-

might have three possible states:
empty. The rules for the parallel updating of the sys-




tem from time ¢ to time ¢ + | are the following: (1)
(ells that are active at { burn out and become passive
at time £ 4+ 1. (2) Passive cells are annihilated (i.e., be-
come empty) when they have one, and only one, active
neighbor.  (3) Empty cells become active when they
have one, and only one, active neighbor, which must
have a passive cell at the opposite position.

Figure 6 displays the rules of the cellular automata,
which can also be summarized in the following way: let
us define the possible state of the automata as 0, empty
cell: 1, passive cell; and 2, active cell. Then the rules
are (1) 2 — 1 (independently of the nearest neighbors)
(2) 210 — 100 (where step (1) has been used), and (3)
0120 — 0012 (that represents the propagation of the
activity 1 the direction pointed out by the pair 12,
having used step (1) in the third position and step (2)
i the second).

Following Chen and Bak [1989], open houndary con-
ditions have been considered in all cases, so that active
cells vanish when passing beyond the edges into the en-
virenment. As initial conditions, a random distribution
of nctive and passive cells 1s used. The system evolves
until no active cells remain, and at this point a cell is
randomly activated. Figure 7 displays a snapshot of the
propagation of the active cells.

The propagation of the active cells through the lat-
tice is similar to a forest fire model, and we will see that
this propagation also reproduces yuite well the double
sequence of leading aftershocks and cascades. Moreover,
this minimalist model shares some resemiblance with
Cochard and Madariaga’s [1994, 1996] madel. C'achard
and Madariaga model the dynamnics of the faulting
through a rate-dependent friction law. For a highly
rate-dependent friction, the nucleation of the fault can
become very complex, displaying, among others, the fol-
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Figure 6.

(4,3) in Figure 6a remains empty in Figure 6b
has more than one active neighbor)
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lowing features of interest for our purposes: (1) prema-
ture locking of the fault accurs, so that the slip duration
at any point of the fault is independent of the total size’
of the fault, (2} premature healing is associated with
partial stress drop, so that stress heterogeneity may be
siinply due to the extreme sensitivity of the fault stress
to very small changes in the slip distribution, and (3)
premature healing is also associated with the generation
of self-healing pulses proposed by Heaton [1990]. Thaose
properties are quite similar to those of the evolution of
the active cells.

With Cochard and Madariaga’s [1994, 1996] model
in mind, let us define the fault plane as a regular lat-
tice, with each cell representing a small portion of the
fault. A cell 1s an asperity, or a piece of an asperity,
for which the stress is higher than a threshold stress,
and less than a eritical one. When the stress reaches its
critical value, the cell becomes active (shp begins with
a corresponding stress release, the stress drop), burns
out and becomes passive.

Depending on the value of the stress at the neighbor-
ing asperities, annihilated cells became active and pas-
sive cells may or may not be annihilated, being a possi-
ble mechanism for this process a healing phase [Heaton,
1990; Cochard and Madariaga, 1994]. Hence an anni-
hilated cell can De identified with a cell with a healed
ship. Again depending on the neighboring cells, a pas-
sive cell may or may not become an annihilated cell at
later times.

In short, the equivalence can be stated as follows:

passive cell  ——
active cell

annihilated cell

broken asperity
asperity ready to break
healed cell

—

|
[
[

ml U
O
0O

[

(c)

Example of the application in a 2-D model of the rules of the minimalist model.
Solid squares refer to an active cell, open squares refer to a passive cell, and the rest to empty
cells. The evolution follows from (a) to (¢). The empty cell located at (3,5) in Figure Ga, by
rule 3 evolves to an active cell in Figure 6b and to a passive cell in Figure 6¢ due to rule 1. The
cell (4,5) is active in Figure 6a, evolves to a passive cell in figure 6b due to rule 1 and remains
passive in Figure 6¢ due to rule 2 (because it has more than one active neighbor). Empty cell

as well as in Figure 6c due to rule 3 (because it
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Figure 7. Snapshot of a 50 x 50 grid. Symbols are the
same as in Figure 6. The activity can only be propa-
gated to empty cells. Passive cells display spatial clus-
tering.

In the classical studies of SOC models, usually the
number of active cells in the svstem 1s used as a di-
rect measure of the degree of activity. As dynamics
proceeds, the number of active cells decreases, and the
system reaches a stable, inactive state. When this hap-
pens, a single cell 1s selected at random and activated.
Between two consecutive activations, avalanches may
take place mstantly, and each avalanche is considered
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as the sum of the active cells, separated from the next
avalanche by a period without activity. The temporal
scale is thus defined in terms of activations.

In the present study, we have followed a different ap-
proach: we have been looking at the behavior of the
systemn in the sense of recording the number of active
cells at each simulation step during the whole period
of activity, that is, timescale refers to each step of the
simulation, so that the avalanches are extended n tire.
Figure 8 shows a selsimic catalog consisting of 500 ac-

tivations, once discarded the first 10000, for a 50 x 50 3§ ;

lattice grid. We define a quake as the period between
two different activations, and its corresponding inten-
sity is characterized by the total number of activated
cells during the whole period of the quake. The units
of the abscissa, named seismic series, are the steps of
the simulation. Figure 9a displays the temporal evolu-
tion of a quake of Figure 8, that of order number 383;
the abscissa now refers to simulation (time) steps. This
quake starts at about ¢, ~ 178,000 and continues for
about 3300 timesteps and displays wide fluctuations in
the number of active cells.

When dealing with real seismograms, there is always
a minimum level of activity required in order to detect
the earthquake (for the analyzed series of aftershocks,
the threshold detection magnitude was 1.9). We have
taken arbitrarily as a detection threshold 25 simulta-
neously active cells; if the level of activity is less than
this figure, the intensity will not be "detected” (i.e.,
recorded) and will be considered as (. An event is
then defined by the upper curve of active cells delimited
by two successive crossing the threshold, as, for exam-
ple, that defined from approximately 181,500 to 181,900 32
timesteps. Viewed in this way, the size of the event is

8e+05 T T T T T T T T —T
6e+05 - / i
o L ]
=
E 4e+05 + =
[}
< -
2e+05 -
0 l Ll . l I ! ll . } ; .I | ] t l L i
le+05 1.2e+05 1.4e+05 1.6e+05 1.8e+05

2e+05

Seismic Series

Figure 8.

Example of a seismiic catalog generated from the minimalist model. Each spike has

the meaning of a quake (for more details see the text). The catalog consists of 500 quakes. Read

le+05 as 1 x 105,
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Figure 9. (a) Zoomed view of quake 333 of Figure 8. An event is defined as the upper curve
delimited by two zeraes, as, for example, between 181,500 and 181,900 time steps. If a detection
threshold is added, the quake is composed of several events, this number depending on the height
of the threshold. (b) Cumulative curve of a quake (composed of several events). By comparing
with Figure 4a, we can see that this curve is composed of leading aftershocks and cascades.

strongly dependent on the threshold level, but as we will
see, the geometrical structure of the cumulative curve
(the object of the present study) is preserved.

Let us now analyze a quake (a set of events) in detail,
Just in the same way as we have analyzed the aftershock
series, that 1s, through the time elapsed between succes-
sive events. Figure 9b shows the cumnlative nurnber of
the successive terms (the number of active cells of an
event for each tiine step) of an event of Figure 9a: Fig-
ure 9b displays the same geometric characteristics as

Figure 2b, that is, similar changes of concavity. In the
present case, the changes of concavity can be explained
in terms of the inhomogeneities generated by the dy-
namical rules of the minimalist model. In fact, passive
cells (broken asperities) tend to be spatially clustered,
as seen in Figure 7. Then, when a propagating pair sus-
ceptible of activation reaches one of those accumulation
of asperities, an "aftershock” is triggered, and the in-
crease of local activity translates into an increase in the
event rate. A total of 100 simulations have been car-
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Figure 10. (a) Cumulative curve of the leading af-
tershocks retrieved from the quake shown in Figure 9b.
Note the excellent fit to Omori’s law. (b) Cascades n-
duced by each of the previous leading aftershocks. Comn-
pare this figure with Figures 4b and Ha.

ried out, with different initial conditions, different grid
size (ranging from 25 x 25 to 100 x 100) and different
threshold level (ranging from 10 to 50). We have always
found the same geometrical characteristics, that is, the
changes of concavities, as shown in Figure 9b; the only
difference, as expected, is the number of points of the
concavities.

The cumulative series, such as shown in Figure 9b,
have been decomposed into leading aftershocks and cas-
cades, in the same way as for the observed aftershocks.
Figure 10 shows one of such decompositions: leading af-
tershocks (Figure 10a) and cascades (Figure 10b); they
are indistinguishable of the decomposition of the ob-
served series; see Figures 4b and 5a. A fit of the dis-
tinct curves of leading aftershocks to the cumulative
curve (2) reveals the following values: k = 0.39, ¢ = 0.0
and p = 0.72. We computed the slopes of the cascades
for each event. and at the contrary of the series of ob-
served aftershocks, the slope does not fit a potential law,
but rather look random. This can be explained because
the rninimalist model is too simple to take into account
the energy propagated as seismic waves, and the loss
of energy due to irreversible processes. The cumulative
curve (2) has been fitted to the 100 numerical simula-
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tions, obtaining for the exponent p the following mean
value: p = 0.7£0.1.

A characteristic feature of the numerical simulations
is that the events that define the quakes are all of similar
amplitude; see Figure 9a. This is also the case for the
observed aftershock series, for lapse times greater than
60 hours, see Figure 2b. While this similarity in ampli-
tudes appears to be intrinsic to the minimalist model,
we do not know whether it is a general feature of the
process of rupture, so that the simnilarity in both dis-
tribution of amplitudes may be fortuitous. The present
paper has been concerned only with the geometrical fea-
tures of the interevent time, so that no efforts have been
devoted to the analysis of amplitudes, which will be the
subject of a future paper.

6. Discussion and Conclusions

In this paper we have attempted to explain an appar-
ently anomalous aftershock series. Assuming that an
aftershock series is a relaxation process, the anomaly
consists of sudden increases in the rate of occurrence,
not allowed in a strictly relaxing process, without the
presence of a large event that would have triggered sec-
ondary series. The detailed view of this increase was
possible because of the low detection threshold of the
C'AD broadband seismic station, allowing the detection
of events of magnitude 1.9 for an epicentral area 80 km
apart. After a classification of the events into leading
aftershocks and cascades, it has been found that the
leading aftershocks obey a power law relaxation, that
is, Oniori’s law, whereas cascades occur at a nearly con-
stant rate. This process could be interpreted in terms of
a nucleation characterized by two different friction laws:
rate dependent and constant rate, the former account-
ing for the initiation of the nucleation of an asperity
and the latter for the rupture of the asperity itself.

Evidence in favor of this interpretation is the cor-
rect prediction of the return time of the main shock
from the observed time series of leading aftershocks.
On the other hand, this result would imply that Di-
etrich’s [1994] model is able to take Into account the
rate of rupture of asperities but not the rupture mech-
anism of the asperity itself. Because of the errors in
epicentral location, the evolution of the rupture in the
fault plane cannot be measured. Thus we have to rely
on theoretical models, as, for example, that of Cochard
and Madariaga [1994]. In that model the time evolution
of the rupture is closely related to the evolution of the
(inhommogeneous) accumulation of stress in the source
regiol. :

We propose that some features of the dyvnamical be-

Lavior of Cochard and Madariaga’s model, such as the
evolution of the stress concentration and evolution of 3
rupture, can be retrieved from the SOC models so fre-
quently used for the simulation of seismic catalogs. In
SOC, an open system evolves to a stationary state,
called critical state. A possible explanation for reaching ~
this state could be the accurnulation of stress from an 4
external source. If at some point of the system the 3
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accumulated stress is higher than a given threshold,
the stress is released in terms of avalanches of all sizes.
When trying to explain the observed aftershock series,
we are interested not in the global behavior of the sys-
tem but in the internal structure of a single event, which
we have termed a quake. The occurrence of the quake
can be thought of as a certain number of superposi-
tions of relaxation processes. each one corresponding to
an avalanche. Once the system is activated, it evolves
until the excess of stress is completely released.

We have studied the temporal evolution of an after-
shock series through a minimalist model that qualita-
tively resembles Cochard and Madariaga’s (1994, 1996]
model of nucleation if instead of passive, active and
empty cells, we translate to unbroken asperities, asper-
ities ready to break and healed cells. This simple SOC
model correctly predicts the behavior of the interevent
occurrence time of the observations, but more evidence
is needed to claim that we are indeed in the presence of
a SOC phenomenon. Further evidence in favor of SOC
is provided by Cochard and Madariaga [1996] in their
commment about rupture propagation governed by a non-
linear rate-dependent friction law. They state that the

- rupture “adjusts itself” in order to satisfy a scaling law,

which suggests the presence of an internal feedback in
the system, very often responsible for the appearance
of self-organized critical states [Sornelle, 1992].
Another aspect that deserves somne comment is that of
the amplitudes. Up to now we have discussed the series
of observed aftershocks as a point series in time axis, but
nothing has been said about their amplitude. We have
found that the leading aftershocks do not have larger
magnitudes than the rest of events. This implies that
small events can trigger cascades of similar amplitudes.
This observation is of interest because it implies that
small events may precede large events, as in the case of
foreshocks. Hence in this kind of relaxation process the
size of the events decreases on the average but might be
strongly affected from fluctuations. However, although
the minimalist model reproduces many of the observed
features in field measures, we have to be well aware
that the minimalist model is a toy model, that is, not
a detailed representation of the physical process, but
anyway, a model that captures a general scenario for the
emergence of scaling behavior [Bak and Tang, 1989].
The present work can be summarized as follows:

1. We have analyzed an anomalous behavior in the
time occurrence of aftershocks. This behavior had not
been previously detected due to the fact that it 1s nec-
essary to combine a very low level of detectability of
the seismic stations, along with the proximity of the
epicentral area.

2. We have interpreted the relaxation process implicit
in the observations in terms of a continuous model. and
we have recovered a realistic return time for the main

shock.

3. A similar relaxation process has been found in a
simple SOC system.
4. The SOC model we have used has a physical ba-
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sis in the nucleation model developed by Cochard and
Madariaga [1994].

As a consequence, more efforts will be devoted fto
study the dynamical characteristics of the model (i.e..
the temporal evolution of the amplitudes), the influence
of some dissipation on the model, and the possible spa-
tial clustering properties (S. C. Manrubia, R. V. Solé,
M. Urquizi, and A. M. (lorreig, Fractality and After-
shocks in a SOC Model for Earthquakes, manuscript in
preparation, 1997). It is our feeling that the minunalist
model, if able to explain the dynaric characteristics.
may be a useful tool in studies of probabilistic predic-

tiom.
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