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An essential quantity to ensure evolvability of populations is the navigabil-

ity of the genotype space. Navigability, understood as the ease with which

alternative phenotypes are reached, relies on the existence of sufficiently

large and mutually attainable genotype networks. The size of genotype

networks (e.g. the number of RNA sequences folding into a particular sec-

ondary structure or the number of DNA sequences coding for the same

protein structure) is astronomically large in all functional molecules investi-

gated: an exhaustive experimental or computational study of all RNA folds

or all protein structures becomes impossible even for moderately long

sequences. Here, we analytically derive the distribution of genotype network

sizes for a hierarchy of models which successively incorporate features of

increasingly realistic sequence-to-structure genotype–phenotype maps.

The main feature of these models relies on the characterization of each phe-

notype through a prototypical sequence whose sites admit a variable

fraction of letters of the alphabet. Our models interpolate between two

limit distributions: a power-law distribution, when the ordering of sites in

the prototypical sequence is strongly constrained, and a lognormal distri-

bution, as suggested for RNA, when different orderings of the same set of

sites yield different phenotypes. Our main result is the qualitative and quan-

titative identification of those features of sequence-to-structure maps that

lead to different distributions of genotype network sizes.
1. Introduction
How genotypes map into phenotypes counts among the most essential ques-

tions to understand how evolutionary innovations might come about and

how evolutionarily stable strategies are fixed in populations. With some of its

features seemingly dependent on the system studied and on the description

level considered, the genotype–phenotype (GP) map appears far from trivial.

Many studies have addressed the effect of mutations on phenotype: point

mutations [1–3], genome fragment deletion [4], duplication or inversions, or

the knockout of specific genes [5]—among others—may or may not have an

effect at the molecular, metabolic, regulatory or organismal level [6]. Also,

the ability of genotypes to yield more than one phenotype is a main resource

of molecular adaptation [7,8]. The probability of expressing different pheno-

types or of experiencing mutations that modify the current phenotype

depends on the structure of the GP map, which eventually determines how

the space of function is explored, and what are the chances that a population

survives or innovates in the face of endogenous or exogenous changes [9–14].

Most models are restricted to the many-to-one realization of the GP map, and

thus assume that adaptation is dominated by mutations. There is a plethora of

different model systems studied under this assumption. Despite seemingly
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Table 1. Summary of symbols used in this work and their short definitions.

symbol definition

L sequence or genotype length

k alphabet size

v(i) versatility of site i

‘ number of sites in the low-versatility class v2

L 2 ‘ number of sites in the high-versatility class v1

S(‘) size of a phenotype

C(‘) number of phenotypes with the same size

Nc(‘) set of ‘-genotypes

r(‘) rank of a phenotype

p(S) probability density that a phenotype has size S

Q(L, ‘) number of phenotypes from different ordering of sites
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relevant underlying molecular differences, those models pre-

sent a remarkable number of common properties. Exhaustive

research on the GP map was pioneered by studies of RNA

sequence-to-secondary-structure mappings. Most topological

properties identified in RNA spaces are shared by other

simple systems, such as the existence of huge genotype net-

works, the increase in phenotype robustness with the size of

the latter, and a very skewed distribution of network sizes.

The set of genotypes that yield the same phenotype typically

forms a network, because those genotypes are pairwise con-

nected through mutations. Sufficiently large genotype

networks so defined were postulated as a condition for the

navigability of sequence space long ago [15]. Subsequent

studies have shown that such large networks do exist, and

that the difference in sequence between genotypes in those net-

works can be as large as the difference between two random

sequences [2,16–18]. Phenotype robustness refers to the aver-

age effect of point mutations in the genotypes of a specific

genotype network. It has been shown to grow logarithmically

with the size of the phenotype in RNA [19], in a self-assembly

model of protein quaternary structure [20] and in simple

models for protein folding [13]. The existence of qualitative

and quantitative statistical properties of the GP maps shared

by apparently dissimilar systems suggests that they might

arise from basic universal features [13,21]. Though genotype

networks are not always fully connected, they do traverse

the whole space of genotypes for sufficiently abundant pheno-

types, thus ensuring high navigability [22,23]. Even in cases

where genotype networks are fragmented, those fragments

could be mutually reached if the GP map is many-to-many.

The existence of ‘promiscuous’ sequences that map into more

than one phenotype enhances navigability and promotes fast

adaptation [7,14].

The statistical property of GP maps that has attracted the

most attention is very likely the distribution of genotype

network sizes, or phenotype sizes for short. Owing to the astro-

nomically large sizes of genotype spaces, initial estimations of

the size of phenotypes were performed through random sam-

plings of genotype space. The results were often represented as

frequency-rank plots, with phenotypes ordered according to

their sizes. Random samplings of genotype spaces in many-

to-one GP maps invariably yielded some very abundant

phenotypes and a large number of phenotypes represented

by a few or just one genotype [24,25]. Often, a frequency-

rank plot was fitted to a generalized Zipf’s law [26], implying

a power-law-like distribution of phenotype sizes. However,

subsequent studies demonstrated that the frequency-rank

plot of phenotype sizes actually had a more complex functional

shape [27–30], and specific functional fits were avoided.

Subsequent studies have exhaustively mapped the complete

sequence space to its corresponding phenotypes, among

which RNA sequence-to-minimum energy secondary structure

map [28,31], the hydrophobic-polar (HP) model for protein

folding [2,29], or toyLIFE, which includes a sequence-to-

structure-to-function description [30]. As a result, complete

phenotype size distributions (for short sequences) are now

available. Fitted shapes range from power-law-like curves

[32] to lognormal distributions [31].

It has been argued that, among other generic properties,

a skewed distribution of phenotype sizes results from the

organization of biological sequences into constrained and

unconstrained parts. In [33], the authors introduce the Fibo-

nacci GP map, a many-to-one artificial model, where sites in
a sequence can be coding or non-coding, and either lead to

new phenotypes under mutations (coding sites) or yield the

same phenotype (neutral, non-coding sites). The model can

be analytically solved and yields a power-law phenotype size

distribution, in qualitative agreement with some observations.

In this contribution, we attempt an identification of the

elements in the organization of sequences that characterize

the quantitative properties of the distribution of phenotype

sizes. We show in a constructive fashion that the model in

[33] is an example of a broad spectrum of sequence-to-structure

GP models. Starting with the simplest case, where sequences

are separated into constrained and neutral parts, and adding

subsequent elements in the organization of the sequences

and versatility levels of the sites, we show how the distribution

of phenotype sizes changes from pure power law (with an

exponent dependent on how genotypes are distributed

among phenotypes) to lognormal. This functional form is inde-

pendent of whether the GP map is many-to-many (sequences

are promiscuous) or many-to-one (the phenotype can be

uniquely predicted from the sequence). Our final example cor-

responds to the RNA sequence-to-secondary structure map,

where we demonstrate that the combinatorial properties of

the distribution of sites of variable neutrality along sequences

causes the distribution of phenotypes to follow a lognormal

distribution, with parameters that can be traced to properties

of the genotype set. Our main result is that a lognormal

distribution of phenotype sizes is the expected result in

any GP map where sufficient variation in the number of

phenotypes of similar size is present.
2. Definitions
We will study four models that interpolate between the sim-

plest case of sequences divided into neutral and non-neutral

sites separated into two groups and a general case (rep-

resented by RNA), and calculate for each of them the size

of a phenotype given the sequence organization of its corre-

sponding genotypes, the number of phenotypes with the

same size, the frequency rank ordering of phenotypes, and

eventually the distribution of phenotype sizes. Table 1 sum-

marizes the nomenclature and definitions used in this

work, and figure 1 illustrates some relevant quantities.
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Figure 1. Schematic of the quantities involved in the calculation of the abun-
dance S(r) of a phenotype as a function of its rank r. Here, ‘ represents the
number of constrained sites and works as an intermediate variable to simplify
calculations; the first three values of ‘ are indicated in the figure. C(‘), cor-
responding to the length of the horizontal segments (arbitrary in this
representation), is the number of phenotypes with ‘ constrained sites and
S(‘) is their size. (Online version in colour.)
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The genotype space is made of sequences of length L
letters from an alphabet of size k. Two examples of alphabet

sizes are k ¼ 2 for a binary alphabet f0, 1g and k ¼ 4 for

DNA or RNA, fA, C, G, T or Ug. The versatility v(i) of site i
is defined as the average number of different letters of the

alphabet that can occupy a given sequence position i. In gen-

eral, k � v(i) � 1 for all sites i. This is a quantity closely

related to neutrality. We will study the simplified case

where sites can take one out of two different values, v(i) [

fv1, v2g, with k � v1 . v2 � 1. Sites are called constrained if

v2 ¼ 1, and neutral if v1 ¼ k. We will use ‘ to count the

number of sites with low versatility.

The size S(‘) of a phenotype is the number of different

genotypes compatible with that phenotype. From the defi-

nition of ‘, it follows that S(‘) is a non-increasing function

of ‘. In the literature, phenotype frequency [33], number of

sequences for a phenotype [32] or neutral set size [31] have

been used with a meaning identical to phenotype size here.

The set of ‘-genotypes is defined as the number of genotypes

compatible with ‘-phenotypes, Nc(‘);S(‘)C(‘). The rank of

the first phenotype in size class C(‘) is r(‘) ¼
P‘�1

i¼0 C(i).
Note that the total number of phenotypes coincides with

the maximum rank.

If p(S) is the probability density that a phenotype has size

S, then we can count phenotypes as

Cð‘Þ ¼
X
i�‘

CðiÞ �
X

i�‘þ1

CðiÞ ¼ PrfS � Sð‘Þg � PrfS � Sð‘þ 1Þg

¼
ðSð‘Þ

Sð‘þ1Þ
pðSÞdS:

To first order we can approximate the integral as C(‘) �
p(S)jS0(‘)j (the approximation gets better the smaller S0(‘)).
Thus, up to a normalization constant, p(S)/ C(‘(S))

jS0(‘(S))j21.

The probability density p(S) yields the probability of find-

ing a phenotype with size S when uniformly sampling over

phenotypes. This corresponds to the distribution PP(S), as

defined in other studies [31].

Finally, we will also introduce a factor w(‘) to represent

the fraction of ‘-genotypes that actually go to a given

‘-phenotype. This factor arises from additional restrictions

in the assignment of genotypes to phenotypes which are

not made explicit in the models. In general, if w(‘) ¼ 1 the

models we are going to introduce assign the same genotypes
to several ‘-phenotypes. This would correspond to a

many-to-many GP map—a sort of map suitable to describe

molecular promiscuity. Incidentally, molecular promiscuity

strongly enhances navigability in genotype space [7,8,14].

Other choices may account for specific restrictions in the

models; in particular, a suitable choice of w(‘) may render

the GP map many-to-one. We will return to this point

when we provide details of the models.

A succint definition of the hierarchy of models introduced

in this work is as follows:

— Model 1. Constrained and neutral sites occupy fixed positions.

Sequences are separated in two parts, the first one of

length ‘ occupied by constrained sites, v2 ¼ 1, and the

second part of length L2‘ occupied by neutral sites,

v1 ¼ k. Two minor variants considered are (i) phenotypes

are all viable and (ii) lethal mutations occur indepen-

dently of the site class.

— Model 2. Constrained and neutral sites occupy variable pos-
itions. This is illustrated by means of two examples:

(i) constrained sites are split into two fragments at the begin-

ning and at the end of the sequence and (ii) constrained sites

can occupy arbitrary positions in the sequence.

— Model 3. Versatile sites occupy fixed positions. Two different

types of sites with fixed versatilities v1 and v2 are considered.

— Model 4. Versatile sites occupy variable positions: RNA. In a first

approximation, RNA sequences contain two types of sites that

occupy different positions in the sequence subject to second-

ary structure constraints: those forming pairs (stacks) in the

secondary structure have average versatility v2, and those

unpaired (loops) have average versatility v1. The model can

be generalized to an arbitrary number of site classes.

Figure 2 schematically represents the different models

analysed here and some properties that will be of relevance

to understand the distributions of phenotype sizes they yield.
3. Results
3.1. Model 1: constrained and neutral sites occupy fixed

positions
This is probably the simplest non-trivial model in the class of

GP maps, very similar in spirit to that presented in [33]. Phe-

notypes are characterized by ‘ constrained sites in the first

part of the sequence. For a fixed ‘, mutations in a constrained

site change the phenotype, and mutations in neutral sites

yield genotypes compatible with the phenotype. Therefore,

Sð‘Þ ¼ kL�‘wð‘Þ, ð3:1Þ
Cð‘Þ ¼ k‘ ð3:2Þ

and rð‘Þ ¼ k‘ � 1

k � 1
: ð3:3Þ

Note that, if w(‘) ¼ 1, the complete genotype space is par-

titioned among ‘-phenotypes for every value of ‘. This

implies that, if we consider all possible phenotypes (i.e. all ‘

values), a particular genotype is simultaneously compatible

with many different phenotypes—representing a highly pro-

miscuous sequence. Specifically, if w(‘) ¼ 1 the total number

of genotypes compatible with ‘-phenotypes is Nc(‘) ¼ kL, so

the total amount of genotypes
P

‘ Nc(‘) ¼ (Lþ 1)kL. This

result clearly shows the many-to-many nature of the GP

http://rsif.royalsocietypublishing.org/


compatible with
more than one

phenotype

ACCGGUCCAGGC

ACCGGUCCAGGC
ACCGGUCCAGGC

ACCGGUCCAGGC

ACCGGUCCAGGC

ACUCAAAGGGAA
. ( ( ( ( . . . . ( ( . . . . . . . ) ) . . . ) ) ) ) . .

. ( ( ( . . . ) ) ) . .

. ( ( . . . . . ) ) . .

. ( ( . . . . . ) ) . .

ACCGGUCCAGGC

ACCUGUCCAGGC

(a)

(b)

(c)

(d)

ACCUGUCCAGGC

ACUAAAAGGGAA
constrained site, v = 1

neutral site, v = k

versatile sites, 1< v < k ACCAAAUGGGAA

L

compatible with
more than one

phenotype

compatibility
depends in a

complex way on
the relationship

between
sequence

composition and
phenotype

incompatible due
to restrictions in

composition

compatible

new phenotype

new phenotype

1 2

Figure 2. Pictorial representation of the main models analysed in this work, as described in §2. From left to right, we depict the organization of sites in phenotypes,
examples of how sequences are assigned to phenotypes, with example mutations highlighted in bold red, and a brief explanation on possible constraints in that
assignment. (a) In Model 1, a given sequence can be assigned with equal probability to any phenotype with ‘ constrained sites. A mutation in one of those sites
changes the phenotype, and there is only one possible structural arrangement given ‘. The bold line in the phenotype associated with the mutated sequence is
meant to represent a new phenotype with the same arrangement as above. (b) Two examples analysed in this work in the class of Model 2 are when constrained
sites are split into two parts at the beginning and at the end of the sequence (above) and when they can occupy arbitrary positions (below). Different ways in which
the ‘ constrained sites can be arranged define different phenotypes to which the same sequence can be assigned. As in Model 1, a mutation in a constrained site
changes to a new phenotype with the same structural arrangement. Models 1 and 2 are many-to-many maps. (c) As occurs in Model 1, ‘ defines the structure of
the phenotype in Model 3, though there might be constraints in the assignment of sequences. In the example, assuming that less versatile sites admit only two
letters, for instance A and C, implies that the sequence shown cannot be assigned to any phenotype with letters G or U in less versatile sites ( positions 4 to 6 in the
example). (d) Model 4 includes elements of Models 2 and 3: the order of sites with different versatilities matters in the definition of phenotype and there are
restrictions in the assignment of sequences to phenotypes. In the example shown, corresponding to RNA, mutations may or may not change the phenotype,
depending on a non-trivial relationship between structure and sequence composition. Still, in general, also in Models 3 and 4 a genotype can be assigned to
multiple phenotypes.
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map of this model with this choice of w(‘)—genotypes are

assigned to all phenotypes they are compatible with and,

therefore, are repeatedly counted.

A minimal rule to avoid multiple assignments is to think of

w(‘) as the probability that a genotype is actually assigned to

an ‘-phenotype. When this probability is uniform, w(‘) ¼ V,

and if we choose V ¼ (L þ 1)21, the total number of genotypes

becomes
P

‘ Nc(‘) ¼ kL, the size of the genotype space, so the

resulting map is effectively many-to-one. Other examples in

which w(‘) depends on ‘ will appear later.

Now, to obtain size as a function of rank we must elimin-

ate ‘ in r(‘) and substitute it into S(‘) to get S(r). In this case,

from equation (3.3) and assuming (k21)r�1,

‘ ¼ logk [(k � 1)rþ 1] � logk [(k � 1)r], ð3:4Þ

and substituting in (3.1)

S(r) � V
kL

k � 1
r�1: ð3:5Þ

To obtain the probability density p(S), we first note that

equation (3.1) implies k‘ ¼ VkLS21, hence C(S) ¼ VkLS21.
On the other hand, S0(‘) ¼ 2(log k)S, thus

p(S)/ S�2: ð3:6Þ

Hence, the probability distribution is a power law with

exponent b ¼ 2.
3.1.1. Non-viable genotypes arise from uniformly distributed
lethal mutations

In the same scenario as above, let us assume that a fraction d of

mutations is lethal, thus leading to a non-viable genotype. In

this case, equations (3.1) to (3.3) are identical, with k substi-

tuted by k(12d). Therefore, S(r) and p(S) are as above with

the latter change. This result shows that the existence of a

non-viable class to which viable genotypes can mutate does

not necessarily imply relevant functional changes in the distri-

bution of phenotypes, which is in either case of the form

p(S) � S2b, with b ¼ 2. The effect of uniformly distributed

lethal mutations could be therefore absorbed as a constant

into V. The situation changes if mutations are not distributed

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160976

5

 on April 19, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
uniformly, but their likelihood depends on ‘. This would be a

particular realization of Model 3 introduced below.

3.2. Model 2: constrained and neutral sites occupy
variable positions

In any realistic model (e.g. the case of RNA), the position of

constrained and neutral sites should matter in the definition

of a phenotype. While S(‘) does not change its functional

form as a result, C(‘) does (and r(‘) as a consequence), causing

potentially relevant modifications in S(r) and p(S). In general,

the number of different phenotypes would take the form

C(‘) ¼ k‘Q(L, ‘), where k‘ accounts for changes in the letter of

the constrained site (yielding a different phenotype, as

assumed) and Q(L, ‘) is a model-dependent combinatorial

number that counts the different ways in which the ‘ sites

can be arranged to yield meaningful (and different) pheno-

types. In general, the factor S22 in p(S) stems from mutations

in neutral sites, while the arrangement of constrained and neu-

tral sites along the sequence is weighted by Q(L, ‘(S)), with

effects on the functional form of p(S) that, in general, depend

on the permitted arrangements. As will be shown, Q(L, ‘)

might enormously increase the number of phenotypes and,

especially, the relative abundances of ‘-phenotypes.

3.2.1. Constrained sites are split into two groups at the extremes
of the sequence

As a way of example, let us consider one of the simplest situations

where the position of the constrained sites matters. Suppose that

those sites can be split into two groups with lengths ‘1 and ‘2 and

placed at the beginning and at the end of the sequence (such that

0� ‘1, ‘2� L and ‘1þ ‘2¼ ‘). This gives Q(L, ‘)¼ ‘ þ 1 differ-

ent phenotypes with ‘ constrained sites, and

Sð‘Þ ¼ kL�‘V, ð3:7Þ
Cð‘Þ ¼ k‘ð‘þ 1Þ ð3:8Þ

and rð‘Þ ¼ k‘ð‘k � ‘� 1Þ þ 1

ðk � 1Þ2
: ð3:9Þ

From these expressions, we can obtain (see appendix A) the

asymptotic (for large r) rank distribution

S(r)/
log rþ a

r
, ð3:10Þ

and the size probability density

p(S)/
log Sþ b

S2
, ð3:11Þ

with a and b some constants.

Therefore, even in this simple case with quite a limited

number of possible organizations of constrained sites, S(r)

and p(S) are no longer pure power laws, though the domi-

nant term of the phenotype size distribution (size still

dominated by mutations in neutral sites) is characterized by

an exponent b ¼ 2. The total number of genotypes compati-

ble with ‘-phenotypes is also modified, Nc(‘) ¼ kL(‘ þ 1),

and is seen to increase linearly with ‘.

3.2.2. Constrained sites can occupy any position in the sequence
We now assume that the constrained and unconstrained sites

can occupy any site of the chain. In that case,

Sð‘Þ ¼ kL�‘V ð3:12Þ
and

Cð‘Þ ¼ k‘ L
‘

� �
, ð3:13Þ

with no simple expression for r(‘). Let us focus, however, on

the size distribution p(S), and consider the case where L�1.

Asymptotically for L! 1

L
‘

� �
� 2L

ffiffiffiffiffiffi
2

pL

r
exp � 2

L
‘� L

2

� �2
( )

: ð3:14Þ

Changing ‘ to S through ‘ ¼ L þ logk V 2 logk S

p(S)/
1

S2
exp � 2

L
logk S� L

2
� logk V

� �2
( )

, ð3:15Þ

and writing S�1 ¼ exp (�log k logk S), we finally obtain

p(S)� 1

S logk

ffiffiffiffiffiffi
2

pL

r
exp �2

L
logk S�L

2
1� logk

2

� �
� logk V

� �2
( )

ð3:16Þ

a lognormal distribution with mean mL � (logk/2)(1 2 logk/

2)L þ log V and variance s2
L � (logk/2)2L, very different

from the p(S) � S22 distribution of the previous cases.

This section presents an example of a main result of this

study. It shows that, when the definition of the phenotype

depends on the specific position of constrained and neutral

sites in sequences, the functional form of p(S) (and, in conse-

quence, of S(r)) qualitatively changes. In particular, the

exponential growth of Q(L, ‘) with L dominates p(S), which

takes the form of a lognormal distribution. Other quantities

defining the GP map, such as k or V, change now the

parameters of the distribution, but do not modify its shape.

3.3. Model 3: versatile sites occupy fixed positions
The models analysed above demonstrate that when sites are

either constrained or neutral, the exponent associated to the

power-law part of p(S) is b ¼ 2. As we show next, this expo-

nent is modified when the sites in the sequence show

intermediate degrees of versatility, which causes the

number of ‘-genotypes to depend on ‘.

Let us consider the case where the L2‘ sites are just less

constrained than the ‘ sites, such that the former admit an

average of v1 different letters of the alphabet and the latter

admit v2, with k � v1 . v2 � 1. Relevant functions read

Sð‘Þ ¼ vL
1

v2

v1

� �‘
V, ð3:17Þ

Cð‘Þ ¼ ðk � v1 þ 1ÞLk‘ ð3:18Þ

and rð‘Þ ¼ ðk � v1 þ 1ÞL k‘ � 1

k� 1

� �
, ð3:19Þ

with k ; (k 2 v2 þ 1) / (k 2 v1 þ 1).

As can be readily seen by substitution, these expressions

reduce to Model 1 for v1 ¼ k and v2 ¼ 1. Now,

‘ ¼ logk 1þ k� 1

(k � v1 þ 1)L r
� �

, ð3:20Þ

yielding

SðrÞ ¼ vL
1

v1

v2

� ��logkð1þðk�1Þ=ðk�v1þ1ÞLrÞ

¼ vL
1 1þ k� 1

ðk � v1 þ 1ÞL
r

 !�logkðv1=v2Þ

: ð3:21Þ

http://rsif.royalsocietypublishing.org/
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For large r, this scales as S(r) � cr2a, where a depends on v1

and v2 as

a ¼ logk

v1

v2

� �
, ð3:22Þ

yielding a ¼ 1 in the limit of Model 1. Substituting this

expression into equation (3.17),

‘ ¼ � 1

a
logk

S
vL

1V

� �
, ð3:23Þ

hence, up to a constant factor,

p(S)/ k�
1
a

logk SS�1 / S�1�a�1

: ð3:24Þ

Again p(S) maintains its power-law shape but its exponent

depends on v1 and v2.

The number of ‘-genotypes now becomes

Nc(‘) ¼ VvL
1(k � v1 � 1)L v2

v1
k

� �‘
: ð3:25Þ

This number can either increase or decrease with ‘ depending

on whether v2 / v1k is larger or smaller than 1. Both situations

are possible under the constraint v1 . v2. The values of a and

b change in response to possible enrichments or depletions in

the total number of assigned genotypes with ‘. This is a first

example of similar cases encountered later in this work and in

the literature, as we will discuss.

3.4. Model 4: versatile sites occupy variable positions:
RNA

In a first approximation (which has been shown to yield

acceptable fits to data [19]), RNA sequences can be divided

into two classes of sites: those in stacks (bound) and those

in loops (unbound), characterized by different degrees of

neutrality (e.g. [34] and fig. 4 in [35]). Changes in the position

of loops and stacks means a different phenotype. Addition-

ally, the composition of each site in the sequence bears a

significant correlation with the structural element it will

preferentially represent in the phenotype (fig. 7 in [36]).

Therefore, a first approximation to a GP representation of

RNA involves elements in our previous Models 2 and 3. In

the following, the abundances or phenotypes will be ruled

by (averaged) values v2 and v1 of the number of letters that

can be changed in stacks or loops, respectively (figure 2),

without affecting the phenotype.

Studies of RNA neutral networks and their related prop-

erties are usually restricted to the many-to-one mapping

between sequence and structure. Despite the fact that

any RNA sequence is compatible with multiple structures

whose relative weight in an ensemble of identical sequences

is defined by their folding energy [37], it is common practice

to select only the minimum energy fold as the associated phe-

notype. This decision transforms an intrinsic many-to-many

GP map where alternative phenotypes can be reached

through mutations or promiscuity, into a many-to-one map

where navigability is limited to the effects of neutral drift.

Analytical approaches cannot include, in general, energetic

considerations, so they implicitly work in the many-to-

many unrestricted case. This situation is comparable to the

assignment of sequences to structures we have performed

in our models, where every sequence is assigned to all pheno-

types it is compatible with, while possible restrictions in the

assignments are encompassed in w(‘). The distribution of
secondary structure sizes for the unrestricted map (i.e. all

sequences compatible with a given secondary structure)

fixing the number of stacks or loops has been derived in

[38] for the general case of structures with pseudo-knots, in

[39] and [40], and in [41] in a form that will be used here.

3.4.1. Number of secondary structures with fixed number of pairs
in RNA

In this case, ‘will denote the number of pairs of nucleotides in

stacks (‘ ¼ 1,2, . . . , (L 2 j ) / 2, with j ¼ 3 if L is odd and j ¼ 4

if L is even), hence L 2 2‘ will be the number of nucleotides

in loops (L 2 2‘ � 3, which is the size of the minimal

—hairpin—loop); pL,‘ is the probability distribution for sec-

ondary structures with 2‘ paired nucleotides, for sequences

of length L (in the limit L, ‘!1). It has been shown

[38,39,41] that this distribution behaves as a normal distri-

bution in ‘ with mean mL ¼ mL þ m0 þ O(L21) and standard

deviation sL ¼ sL1/2 þ s0L21/2 þ O(L23/2). In the case that

structures with stems with less than two base pairs or loops

with less than three unpaired bases are forbidden—account-

ing for minimal energetic constraints—we obtain

m � 0:28647, m0 �2 1.36502, s � 0:25510 and

s0 � �0:00713. Note that different constraints will lead to

different values of these quantities, but otherwise will not

change the fact that pL,‘ is a normal distribution. Finally, the

number Q(L, ‘) of different phenotypes of a sequence of

length L with 2‘ paired bases is given, in the limit L, ‘!1, by

Q(L, ‘) � 1ffiffiffiffiffiffi
2p
p

sL
e�(‘�mL)2=2s2

L QL, ð3:26Þ

with QL � 1.48L23/2(1.85)L (see [38–41]).

3.4.2. Size distribution
In the case that the unpaired sites admit v1 different letters

and the paired sites v2 letters (1 � v2 � v1 � k), the size of a

phenotype is given by S(‘) ¼ vL22‘
1 v2‘

2 . Here, we will consider

that a phenotype is formed by all sequences compatible with

that phenotype, thus setting V ¼ 1. We have

‘ ¼ L log v1 � log S
2 log (v1=v2)

: ð3:27Þ

Denoting

mS ¼ L log v1 � mL, sS ¼ 2 log
v1

v2

� �
sL, ð3:28Þ

and noting that pL(S) ¼ Q(L, ‘) / QL, substitution of (3.27) into

(3.26) yields the lognormal distribution

pL(S) � 1ffiffiffiffiffiffi
2p
p

sSS
e�( log S�mS)2=2s2

S : ð3:29Þ

3.4.3. Rank distribution
In the same two-sites approximation

C(‘) � (k � v2 þ 1)2‘(k � v1 þ 1)L�2‘Q(L, ‘): ð3:30Þ

The functional form of the rank r(‘) is derived in

appendix B. After some algebra, we arrive at

S(r) � vL(1�2a)
1 v2aL

2 exp hL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log r

cL

r( )
,

h ; s
ffiffiffiffiffi
8c
p

log
v1

v2

� �
,

ð3:31Þ
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with constants a and c depending on parameters of the

combinatorial factor Q(L, ‘), see appendix B.
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4. Discussion
The functional shape of the distribution of phenotype sizes

is strongly dependent on the sequence organization within

phenotypes. In a first approximation that discards the hetero-

geneity among genotypes in the same phenotype, one may

describe that ensemble of sequences through a prototypic

sequence whose sites admit a phenotype-dependent, variable

number of letters of the alphabet, a quantity that we have

dubbed versatility. The substitution of each sequence in a phe-

notype by the average over the phenotype seems a strong

approximation. However, there is evidence that deviations

from the average within a phenotype are small: the number

of neutral neighbours of genotypes within a phenotype are

tightly clustered around an average value characteristic of

that phenotype size [19]. With this proviso, two main elements

determine the corresponding distribution of phenotype sizes.

The first one, generic for all systems, is the relationship

between the size of a phenotype and the versatility v(i) of

each site i. In the framework used in this work, the size of a

phenotype can be written in general as

S({v(i)}) ¼
Y

i

v(i): ð4:1Þ

This product yields an intrinsic allometric relation between the

size of a phenotype and the length of the sequence. The second

element, specific of each sequence-to-structure map, is the

number of phenotypes with similar size. This quantity takes

the overall form

C({v(i)}) ¼ QðL, {v(i)})
Y

i

(k � v(i)þ 1Þ, ð4:2Þ

with the combinatorial factor accounting for the number of

ways in which an ensemble of L sites with v(i) values can be

arranged into meaningful phenotypes, and the product

accounting for the number of neutral sequences within the

phenotype. If the values of the combinatorial factor are

constrained enough such that the asymptotic behaviour of

Q(L, fv(i)g) with L is subdominant with respect to that of the

product—as in Models 1 and 3—the distribution of phenotype

sizes is a power law. If, on the contrary, the dominant term is

the combinatorial factor—in particular when the distribution

of structural motifs converges to a Gaussian—the distribution

of phenotype sizes becomes a lognormal. Our calculations

make it explicit that variations in the precise values of versati-

lity, in the number of different classes of sites, or in particular

constraints on structures (as, e.g. the minimum number of base

pairs required to form a stack) have a quantitative effect on the

parameters of the lognormal, but do not affect the shape of

the distribution.

In the case Q(L, fv(i)g) ≃ 1, we should expect a power-

law-like distribution of phenotype sizes characterized by an

exponent b. The actual value of b stems from a combination

of the number of genotypes compatible with a given pheno-

type and the total number of phenotypes with the same

(or similar) size. Variations in the functional form of w(‘)

with ‘ could be responsible for changes in b. In a general

scenario, let us assume that phenotype sizes can be ordered

according to a certain variable l (in our case the number of

low versatility positions ‘), and let us define the total
number of genotypes compatible with l-phenotypes as

Nc(l);S(l)C(l), formally generalizing the quantity calcu-

lated in the specific models tackled in this work. The

behaviour of Nc(l) with l determines the value of the expo-

nent b: if Nc(l) is constant, then b ¼ 2. However, if Nc(l) is

exponentially enriched (depleted) in genotypes as l grows,

the value of b becomes larger (smaller) than 2. In the case

of Model 3, for example Nc(‘) ¼ AB‘, with B ¼ (v2 / v1)(k 2

v2 þ 1) / (k 2 v1 þ 1) and b ¼ 1 þ 1 / a. Two examples of

enrichment or depletion in the number of genotypes compatible

with ‘-phenotypes are fv1, v2g ¼ f4, 2.5g, with B ¼ 1.56 and

b ¼ 2.95, and fv1, v2g ¼ f3, 1.5g, with B ¼ 0.875 and b ¼ 1.81.

In a very explicit way now, changes in the actual assignment

of genotypes to phenotypes through w(l) (embedded in S(l))

will affect the probability density distribution.

Another example in the class of Model 3, yielding power-

law-like p(S) with non-trivial b is the model in [33]. Besides

the division of sequences into neutral and constrained

sites, the authors introduce a stop codon which causes an

‘-dependent transition rate to alternative phenotypes, that

being the eventual reason for a non-trivial value of b.

In that case, Nc(‘) � 2L�‘f‘�1=
ffiffiffi
5
p

, which corresponds to a

value of B ¼ 0.81 and, consistently, 2 . b ¼ 1.69, with

w(‘) ¼ f‘�1=(2‘
ffiffiffi
5
p

). The stop codon represents a particular

instance of a decreased tolerance to mutations in less versatile

sites. Another formal example could be a rate to lethal

mutations increasing with ‘. This class of mechanisms skew

the assignment of genotypes to phenotypes or, equivalently,

deplete the amount of genotypes associated with phenotypes

as ‘ grows: larger values of ‘ imply that there are more pos-

itions where non-neutral mutations can occur, and this leads

to a . 1 and b , 2. Figure 3 summarizes the sequence organ-

ization of different models with a power-law distribution of

phenotype sizes, the origin and functional form of the Nc(‘)

function, and the corresponding b value.

In figure 4, we represent schematically the functional

form of S(r) and p(S) for the class of our Model 3 and a poss-

ibly general class of models analogous to RNA (class 4). At

present, it is difficult to clearly match all models in the litera-

ture to classes 3 or 4. For example, the HP non-compact

model seems to be characterized by a distribution of pheno-

type sizes similar to a power law [42], while other models

for heteropolymers that have been compared with HP yield

broad distributions with a maximum [43]. Even RNA with

a two-letter alphabet apparently yields power laws [32], so

it might also belong to a non-trivial combination of Models

3 and 4. This is a very intriguing and complex question that

we have to leave for future studies. These considerations not-

withstanding, the situation where the combinatorial factor

converges to a Gaussian distribution is expected to be very

general for sequence-to-structure GP maps [39], implying

that a lognormal distribution of phenotype sizes might be a

generic property of such maps. Up to now, there are few

quantitative results supporting this statement, very likely

due to the impossibility to exhaustively fold genome spaces

for large L. A remarkable exception is [31], where the lognor-

mal distribution has been suggested as the best fit to

computational distributions of RNA secondary structure

sizes for lengths up to L ¼ 126. It is interesting to highlight

that our results have been obtained under a uniform assign-

ment of genotypes (represented through our variable V) to

phenotypes. However, the many-to-one GP map in RNA

assigns the minimum energy structure to each sequence. In

http://rsif.royalsocietypublishing.org/
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the language of our function w(‘), the correlation between

energy and ‘ in RNA will preferentially assign genotypes to

phenotypes with a large number of pairs (large ‘) because,

on average, the larger the number of pairs the lower the fold-

ing energy [27]. It cannot be discarded that genotype-

to-phenotype assignment rules based on quantities not

considered here might skew the distribution or eventually

yield different functional forms. Though this is a possibility

that has to be kept in mind, results in [31] reveal that, at
least in the case of four-letters RNA, deviations from log-

normality cannot be numerically detected. We suspect that

this is likely due to a dominant effect of Q(L, ‘) over w(‘)

both in the many-to-many and in the many-to-one

representations of the RNA sequence-to-structure map.

Simple models such as those presented here can be used as

well to estimate other relevant quantities of GP maps, and to

determine if they are almost universal or model-dependent.

One such quantity is the relationship between phenotypic

http://rsif.royalsocietypublishing.org/
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robustness and the size of a phenotype. In our scenario, and

similarly to other examples [13,33], phenotypic robustness

coincides with genotypic robustness, which is calculated

straightforwardly as the ratio between the number of neutral

neighbours, (n1 2 1)(L 2 ‘) þ (n2 2 1)‘, and the total number

of neighbours of a sequence, L(k 2 1). This yields a function

of ‘/L. Next, ‘ is obtained easily from its relationship with

S(‘), and it takes the general form ‘/ logzS, where z is a

model-dependent quantity. Therefore, the relationship between

phenotype robustness and the logarithm of phenotype size con-

sistently appears in very generic sequence-to-structure models.

The relationship between phenotype robustness and evolvabil-

ity cannot be derived unless an explicit rule linking possible

mutations to phenotypes with different ‘ is introduced. In

our Models 1, 2, and 3, such a rule, which could take a form

analogous to the stop codon of the Fibonacci map [33], is not

defined. The case of RNA is particularly interesting and has

received significant computational attention since long ago

[34]. Only partial explorations of the accessibility of alternative

phenotypes have been performed due to the huge sizes of phe-

notypes [11,28]. Hopefully, further extensions of our Model 4

could help in the analytical treatment of this highly complex

problem. Advances in empirical techniques, such as the inten-

sive use of microarrays, should allow in the near future an

exhaustive characterization of actual genotype spaces, as has

been done for short transcription factor binding sites [12]. We

believe that analyses of empirical GP maps will reveal strengths

and weaknesses of the approach here presented, and likely

suggest ways of improvement, regarding in particular a

formal description of phenotype networks (networks of

genotype networks) and evolvability in natural systems.
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Appendix A
In order to derive S(r) and p(S) for Model 2 with constrained

sites split into two groups at the extremes of the sequence

(§3.2.1), it will prove convenient to use the affine transform-

ation of ‘

x ; ck[(k � 1)‘� 1] ¼ ‘ log k � ck, ck ;
log k
k � 1

: ðA 1Þ

Then equation (3.9) can be rewritten as

(k � 1)2r� 1 ¼ [(k � 1)‘� 1]k‘ ¼ x
ck

e‘ log k ¼ x
ck

exþck , ðA 2Þ

from which

x ex ¼ [(k � 1)2r� 1]ck e�ck : ðA 3Þ

Inversion of this equation yields

x ¼ W([(k � 1)2r� 1]ck e�ck ), ðA 4Þ

with W(x) being Lambert’s product-logarithm function [44,

definition 4.13.1].
Now,

S(‘) ¼ VkL e�‘ log k ¼ VkL e�ck�x, ðA 5Þ

and using equation (A 3),

S(‘) ¼ VkL

ck

x
(k � 1)2r� 1

: ðA 6Þ

Finally, as W(z) � log z þ O(log log z) when z�1 [44, prop-

osition 4.13.10], when the rank r is large

x � log [(k � 1)2r� 1]þ log ck � ck � log rþ a, ðA 7Þ

with a a constant. Then, for large r we obtain equation (3.10).

As for p(S), from equations (3.7) and (3.8),

Cð‘Þ ¼ ð‘þ 1Þk‘ ¼ ð‘þ 1ÞVkL

S
ðA 8Þ

and

log S ¼ logðVkLÞ � ‘ log k: ðA 9Þ

Differentiating log S with respect to ‘ yields jS0(‘)j ¼ Slogk.

Therefore, eliminating ‘ from this same equation we end

up with

C(‘(S))jS0(‘(S))j�1
/

log Sþ b
S2

, ðA 10Þ

with b another constant. This is equation (3.11).
Appendix B
The rank function for the case of RNA sequences whose sites

may take two values of neutrality v1 and v2, a number Q(L, ‘)

of secondary structures of length L with ‘ sites with neutrality

v1 and a total number of QL different secondary structures of

length L is

rð‘Þ�QLðk�v1þ1ÞL
ðð‘�mLÞ=sL

�1

1ffiffiffiffiffiffi
2p
p k�v2þ1

k�v1þ1

� �2sLxþ2mL

e�x2=2dx

¼QLðk�v1þ1ÞL exp mLjþ
j2

2
s2

L

� �ðð‘�mL�js2
LÞ=sL

�1

1ffiffiffiffiffiffi
2p
p e�x2=2dx,

ðB 1Þ

where

j ; 2 log
k � v2 þ 1

k � v1 þ 1

� �
: ðB 2Þ

Now, as ‘ 2 mL 2 js2
L will be negative for all mL 2 sL � ‘ �

mL þ sL, we can use the asymptotic expansion of the comp-

lementary error function

erfc x ;
2ffiffiffiffi
p
p

ð1

x
e�t2

dt ¼ 2ffiffiffiffi
p
p

ð�x

�1

e�t2

dt � e�x2

x
ffiffiffiffi
p
p

to write

r(‘) � QLsL(k � v1 þ 1)Lffiffiffiffiffiffi
2p
p

(mL þ js2
L � ‘)

exp mLjþ
j2s2

L

2
� (mL þ js2

L � ‘)
2

2s2
L

( )
:

ðB 3Þ

In order to find how the size of a phenotype

depends on its rank value r(‘) it is convenient to introduce

new parameters. Let us denote m;mL/L and s ; sL=
ffiffiffi
L
p

,

and

a ; mþ js2, c ; jmþ j2s2

2
þ log (k � v1 þ 1)þ log r ðB 4Þ
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with r ≃ 1.85. The size of a phenotype is given by S(‘) ¼

vL22‘
1 v2‘

2 , therefore

1

L
log S ¼ log v1 � 2

‘

L
log

v1

v2

� �
: ðB 5Þ

Now, taking logarithms in (B3) and neglecting subdominant

terms in L,

1

L
log r � c� 1

2s2
a� ‘

L

� �2

: ðB 6Þ

Hence,

‘

L
� a� s

ffiffiffiffiffi
2c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log r

cL

r
ðB 7Þ
and therefore

1

L
log S � log v1 � 2a log

v1

v2

� �

þ s
ffiffiffiffiffi
8c
p

log
v1

v2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log r

cL

r
ðB 8Þ

which implies

S � vL(1�2a)
1 v2aL

2 exp hL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log r

cL

r( )
,

h ; s
ffiffiffiffiffi
8c
p

log
v1

v2

� �
: ðB 9Þ
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