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Are Rainforests Self-organized in a Critical State?
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The spatial distribution of low-canopy gaps in the Barro Colorado Island rainforest (Panama) is shown
to exhibit fractal properties. A simple cellular automata model (the ‘‘Forest Game’’) was constructed
in order to simulate the gap dynamics of such forests as well as the observed macroscopic spatial
regularities. Generalized fractal dimensions are studied as a function of several relevant parameters. The
observed and simulated fractal behaviour is shown to be related to self-similar dynamics of biomass.
This result is interpreted as related to the emergence of a class of ‘‘self-organized critical state’’.
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1. Introduction

1.1.   

Following the pioneering studies of Mandelbrot
(see e.g. Mandelbrot, 1982), fractal objects have
become a familiar class of structures in almost all
areas of scientific knowledge. Today, it is clear that
self-similarity is widely present in nature. Biological
systems are not excluded from the fractal world:
blood vessels, neural structures and plant growth
have been shown to be fractal-like objects (Burrough,
1981).

As recently discussed by Sugihara & May (1990),
different scales of observation are necessarily related
to different aspects of structure, and fractal methods
can be applied in order to detect self-similar
hierarchies in ecology. Such hierarchical scaling has
been observed, for instance, in coral reefs (Bradbury
et al., 1984), from patch perimeter measures in
deciduous forests (Krummel et al., 1987), vegetation
patterns (Morse et al., 1985) and landscapes (Wiens
& Milne, 1989; Scheuring, 1991).

The aim of this paper is to show how a non-linear
dynamical process—gap formation—in forest ecosys-
tems can generate such fractal structures. Treefall and
gap formation (and regeneration) in rainforests has

been shown to be a major force in tropical ecosystems
(Whitmore, 1991). From time to time, old trees fall
down, leaving a gap in the canopy, giving new plants
the chance to develop. The gap torn through the
forest is often large, even for a single tree, due not
only to the size but also to the strong link with
neighboring trees through elastic lianas. The opening
of a gap shakes the forest equilibrium to the starting
point and recurrent successional phases are observed.
In this way, gaps are known to contribute to the
maintenance of high diversity levels in tropical
rainforests (Jonsson & Esseen, 1990). Such high
diversity is particularly clear in relation to bryophyte
populations, and species richness has been shown to
be highest at intermediate patch ages. Consequently,
treefall disturbances are important for the persistence
of colonists. Even in grassland ecosystems, gaps are
known to be very important (Silvertown & Smith,
1988).

As an example, consider the Barro Colorado Island
(BCI) forest, a remnant of rainforest isolated after
the formation of the Panama’s canal. Figure 1 shows
a map of a 50-ha plot showing 2582 canopy survey
points, where the height of the canopy was less
than 10 m in 1982, 1983 or in both years (Wendel
et al., 1991; see also Brokaw, 1985). Such low-
canopy sites generally correspond to gap formation
(after some recent recolonization has been produced).
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F. 1. Map of 50-ha plot on Barro Colorado Island, Panama. Here 2582 low canopy survey points are shown, as block dots. These
points indicate that the eight of the canopy was Q10 m in 1982, 1983 or in both years.

Furthermore, the distribution of fallen trees is not
significantly associated with topographic features
(Lieberman et al., 1985) and the spatial distribution
of gaps is known to be non-random and independent
of site factors. A first step in our understanding of
these spatial structures can be obtained from fractal
theory.

Using the BCI map, self-similar structures can be
detected. In this sense, we can calculate the fractal
dimension Dg of the low-canopy gap distribution. If
we divide our fractal into a set of boxes of edge size
e, using N (e) boxes to cover the set, N (e) is expected
to scale as

N (e)1 e−Dg, (1)

where Dg can be estimated in several ways (see, for
example, Barnsley, 1988). Explicitly,

Dg =−lim
e4 0

log(N (e))
log(e)

. (2)

For the BCI ecosystem, we found Dg 1 1.86—clearly
a non-integer. In this sense, the BCI forest is a
very large living fractal. The existence of self-similar
behaviour here is suggestive of self-organization near
a phase transition, where large-scale correlations can
emerge. In an equilibrium state, correlations are
limited to local scales (Bak & Creutz, 1994). To sum
up, the BCI plot, which at first appears featureless, is
actually remarkably correlated.

However, Dg is only one of an infinite spectrum of
the so-called correlation dimensions of order q.

Equation (2) is the particular case q=0 of the general
expression (see, for example, Schuster, 1989):

Dq =lim
e4 0

1
(q−1) ·

log[X (q)]
log(e)

, (3)

where

X (q)= s
N(e)

i=1

pq
i ,

with −aQ qQ+a. The probability of every i-th
box (pi ) can be arbitrarily defined over the set,
with the only requirement being normalization:
SN(e)

i=1pi =1. In the particular case of BCI (Fig. 1), we
have assigned equal probability to every black dot,
pd =1/2582. Therefore, pi =Nbd × pd , where Nbd

stands for the number of black dots inside the box.
This is called a ‘‘mass measure’’. For q=0 we have
again Dg =D0. It can be shown that the inequality
Dq' EDq holds for q'e q. For q=1, the so-called
information dimension is merely the Shannon
entropy:

D1 = lim
e4 0

s
N(e)

i=1

pi log(pi ), (4)

and for q=2 the correlation dimension is defined by:

D2 = lim
e4 0

log$ s
N(e)

i=1

=1 p2
i%

log(e)
. (5)

Here D2 is in fact a measure of correlations: p2
j

give the probability of finding at least two points



  -    ? 33

inside the j-th cell. Thus, D1 is sensitive to binary
correlations in the probability distribution. These
dimensions and the whole spectrum of them pro-
vide an enormous amount of additional information
about the geometric structure of the underlying
fractal set.

Another important function is defined in relation to
D (q): the spectrum of fractal dimensions, f (a). a is a
scaling exponent defined by

pk 1 ea
k ,

representing the divergency of the measure. f (a) is the
fractal dimension corresponding to the set with
diverging exponent a. They can be calculated from
D (q) in the following way:

a (q)=
d
dq

[(q−1)Dq ], (6)

f (a (q))=Dq (q−1)− qa (q) (7)

(A detailed study of D (q) and f (a) can be found in
Halsey et al., 1986).

F. 2. Two examples of fractal objects: (a) an homogeneous square and (b) a multifractal circle. They were obtained by progressively
branching with square and circular boundaries, respectively (from Nelson, 1992). (c) Their spectrum of fractal dimensions, f (a). f (0)=1.83
(square) and (f (0)=1.82 (circle). There exists a single-valued point for f (a) for the square boundary which spreads into a continuous
function for the circle.
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For a pure fractal, there exists no basic length
which can be used as a unit of length; the whole
spectrum of dimensions collapses into the usual
fractal dimension, i.e. the f (a) spectrum reduces to a
point, and the D (q) to a straight line. This is related
to the non-existence of subsets of different density
in the fractal. The diverging exponent is thus the
same for every part of the set. On the other hand,
real fractals are, in fact, multifractals: the measure
(or equivalently the density, if we are dealing with
a mass measure) is not the same in every subset,
and each of them has a different fractal dimension
(f (a)) and a different associated diverging exponent
(a). In the limit, this represents the continuous
multifractal spectrum. An example of both cases is
depicted in Fig. 2. The square has D0 =1.83, and
the circle D0 =1.82—roughly the same. It is worth
noting that the spread of f (a) when a change in
the homogeneity of the square is introduced by
means of a change in the boundaries (from Nelson,
1992).

For the problem under consideration, it is well
known that the effects of small and large gaps on the
colonizer species are quite different. In this sense,
multifractal measures can give us a better quantitative
characterization of these differences. If we calculate
the spectrum of fractal dimensions for the BCI forest,
the set {Dq} clearly shows a wide distribution of
fractal dimensions, as shown in Fig. (3). The BCI is
then a multifractal, at least in relation to the spatial
structure of gaps. As can be observed, D0 1 1.86,
i.e. roughly the same as before.

To gain insight into the origin of such a self-
similar spatial structure, we can try to construct a
simple model able to retain the basic mechanisms
of gap formation, competition and treefall. Using
simple, spatially extended models, we can expect to

capture the essential mechanisms (Ruthen, 1993).
This approach is particularly well-known from
studies on competition in plant communities (for a
recent study, see Silvertown et al., 1992, and
references therein). As a dramatic example, complex,
macroscopic patterns of wave regeneration in Abies
forests can be very well reproduced by means of
very simple CA rules (Iwasa et al., 1991). In the
following sections, a CA is described as well as
several numerical simulations. The resulting dynamics
is shown to be related in several ways with the so
called ‘‘self-organized criticality’’ phenomenon.

1.2.    

Recent studies on the behaviour of non-linear
systems far from equilibrium with extended spatial
degrees of freedom have shown that these systems
often spontaneously evolve towards a so-called
‘‘self-organized critical state’’ (Bak et al., 1988; Bak
& Chen, 1991). Under these conditions, the system is
organized in a well-defined way (there is some kind of
‘‘attractor’’) which is characterized by the existence of
order at all length scales and where small pertur-
bations evolve creating objects of all sizes. This
essential result provides in fact a physical expla-
nation for some fractal objects and some natural
power laws as the one observed for the so-called 1/f
noise (Bak & Chen, 1989).

The standard example of self-organized criticality is
the pile of sand. As the pile grows by adding grains
of sand, the slope grows until the ‘‘angle of repose’’
is reached.

Now, if new grains are added avalanches occur
with a wide range of sizes. The only limitation is
linked to the absolute size of the pile. A cellular
automata model can be constructed in order to

F. 3. The BCI of Fig. (1) was covered with a grid of 1250 boxes, in order to obtain the mass measure for the forest. (a) Spectrum
of correlation dimensions, D (q). (b) Spectrum of fractal dimensions, f (a). f (0)=D0 1 1.86, the fractal dimension of BCI.
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simulate this process (Bak et al., 1988). The
dynamical and structural properties of this state can
be characterized through several scaling laws. In the
special case of the sand pile, the number of grains
N (r) falling a distance r at the same time step follows
the exponential law:

N (r)1 r−D,

where D is a fractional quantity: the ‘‘fractal
dimension’’ of the avalanches. Several applications of
self-organized criticality have been developed involv-
ing the study of 1/f noise (Bak et al., 1988),
earthquakes, large scale structures in the Universe,
and a simple ecosystem model: the well-known ‘‘game
of life’’ (Bak et al., 1989).

The game of life is just a caricature of reality, but
as Chen and Bak pointed out, it ‘‘. . .serves to demon-
strate how large-scale structures can arise in com-
plex extended dynamical systems’’. Using numerical
perturbation experiments (adding individuals to a
stationary configuration), they analysed the corre-
sponding power laws related to the distribution of
clusters (avalanches) of size s, D (s), and the
distribution of the duration of perturbations D (T ).
They found two well-defined scaling laws: D (s)1 s−t

with t1 1.4 and D (T )1T−b with b1 1.6. In spite of
the artificiality of this model, the authors claimed that
the general properties of the critical state are common
to other more realistic situations. The validity of this
scheme was recently shown by means of Monte Carlo
simulation studies (Solé, 1991; Solé et al., 1992). The
interesting fact is that the spatial distribution of
automata in the lattice at the critical state was also
shown to exhibit fractal behaviour. The link between
both spatial and temporal domains is self-similarity:
1/f noise is merely the expression of the existence of
an underlying self-similar spatial structure. Con-
versely, the spatial structure is the result of
scale-invariant dynamical processes. For the BCI
example (and others) we know that fractality is
present, that not all gap sizes are equally probable
and that non-linear interactions take place along the
forest succession. If we calculate from the Barro
Colarado map the frequency distribution of gap sizes,
we find only an additional fingerprint of a critical
state. Figure 4 depicts a power-law distribution of gap
sizes, i.e.

N (G )1G−f

with f=1.74. Power laws for cluster sizes are typical
when a system is operating out of equilibrium at or
near a threshold of instability. A wide spectrum of

F. 4. Power-law distribution of gaps from the BCI forest. A
critical exponent f=1.74 is obtained.

possibilities in patches of habitat is spontaneously
generated by means of this mechanism.

Following Bak’s theory, we can conjecture that the
system evolves automatically to this critical state
without any fine-tuning (Bak & Chen, 1989). Now the
question is: can the fractal structure of the BCI
ecosystem be generated as the result of self-organiz-
ation near some kind of critical state? A cellular
automata model can give us an answer to this
question.

2. The Forest Game

The cellular automaton (the ‘‘forest game’’) is a
forest growth model running on a two-dimen-
sional lattice of L×L points. Cellular automata (see
Wolfram, 1984) are mathematical models for com-
plex natural systems with local interactions, and the
value of each automaton is determined in some way
by the previous values of a neighbourhood of sites
around it. Trees (our automata) grow and compete
for resources (light, nutrients, etc). A given tree can
grow from a minimum size S0 to a maximum value
Sc. As the S=Sc state is reached (or the tree becomes
too old), treefall occurs. This treefall will occur in
accordance with some given probability. The state
of each tree is then determined by Sn (i, j, tij ) with
i, j $ {1, 2, . . . , L} and n=0, 1, 2, . . . the corre-
sponding time step. The actual age of the (i, j )-th tree
is defined by tij . For simplicity, we will use the
notation Sn (i, j ), without (explicitly) taking into
account the age of the tree. The automata rules are
defined by:
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(i) Growth. A given tree will grow if the screening
from nearest trees (here we take the eight nearest
neighbours) is weak enough. Explicitly, the tree size
is updated following:

Sn+1(i, j )=Sn (i, j )+Dn (i, j )

where Dn (i, j ) include the way in which nearest trees
interact. Here we take a simple screening between
trees and in this case Dn (i, j ) is defined as:

Dn (i, j )=U$m−
g

8
s

�r, s�
Sn (r, s)%,

where U(z)= z if zq 0 and U(z)=0, otherwise.
Here �r, s� indicates the restriction to nearest trees
(obviously (r, s)$ (i, j )). We take m=1 in all our
simulations. g gives us the interaction strength. For

g=0, no interaction takes place (trees are indepen-
dent) and for g very high growth will not be possible.
Here we take g=1.

(ii) Death. A given tree will die randomly with
some probability pd and treefall will take place.
Additionally, no trees beyond some specified size Sc

can exist. Thus, if Sn (i, j )eSc , treefall will also
occur (here we take Sn+1(i, j )=0 if Sn (i, j )eSc ).
The study of mortality patterns in tropical forests
gives us an estimate of pd $ (0.1–0.3) (Lieberman
et al., 1985).

(iii) Birth. A new tree can appear at any empty
lattice point with some probability pb . The size of the
new tree is the smallest one, i.e. S0(i, j )=S0. In all our
simulations we take S0 =0.1.

(iv) Gap formation. Finally, a canopy gap for-
mation rule needs to be defined. In our model, the
canopy gap will be formed each time a tree dies, and

F. 5. (a) Dynamics of the forest biomass at the critical state for a 40×40 lattice. Parameters are pb =0.3 and pd =0.01. (b) Fourier
transform (here, b1 0.93), averaged over five samples.
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the gap size will be proportional to the size Sn (i, j )
of the dying tree. In order to make the rule as
simple as possible, we create a circular gap of
radius R around the (i, j ) point. All nearest trees such
that

s
�r, s�

Sn (r, s)ESn (i, j ),

(verifying (r− i )2 + (s− j )2 E i 2 + j 2) will be
removed (i.e. Sn+1(r, s)=0) and clearly R is
determined through the previous inequality.

As we can see, no fine details about interactions are
included. Other more realistic rules could be used,
but, as previously mentioned, only the basic skeleton
of interactions is considered here.

3. Results

Many computer simulations have been performed,
using several lattice sizes (up to L=256 in order to
avoid finite-size effects). Typically, L=80−100 have
been used as those shown in this paper.

An example of the dynamics of the total bio-
mass B (t ) is shown in Fig. 5(a). A wide spectrum of
fluctuation sizes, as in other self-organized critical
phenomena, can be observed. If the Fourier spec-
trum is calculated for m=29 points (after 200
transients are discarded, and averaging over five
simulations) we can clearly appreciate a 1/f b-like
shape, which oscillates in our simulations between
0.87E bE 1.02 [Fig. 5(b)]. As discussed before in
relation to the sandpile model, self-organized spatial
structures emerge from the non-linear competition

F. 6. Simulation model. Here a 81×81 lattice has been used, with pb =0.3 and Sc =30. Probability of death is (a) pd =0.01 (b)
pd =0.025 and (c) pd =0.05. Three time steps are shown. From left to right, t=5, t=50, and t=150.
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F. 7. (a) Multifractal spectrum f (a) and (b) correlation dimensions D (q), for three simulated ecosystems. Here we have used 80×80
lattices, pb =0.3 and several values of pd , as indicated.

process between nearest trees, and they reflect the
kind of dynamical pattern involved.

Now, let us analyse the spatial structure. Nine
snapshots of our simulated forest are also shown in
Fig. 6(a–c), starting from a low-density lattice (with
only 0.5L2 trees of minimum size S0). Black points
indicate low canopy points, where Sn(i, j )=0). For
n=5, many disperse gap points are present, and for
n=25 the birth and growth of trees has reduced the
number of such points and the first small gaps appear.
Later in the simulation, the distribution of gap sizes
reaches a stable state and the forest shows a dynam-
ical evolution with self-similar structure (correspond-
ing to the last three snapshots). The total biomass and
fractal dimensions are stable for ne 50. The bio-
mass grows faster in the first steps (when only small
trees are present) and less fast for 7−8E nE
38−40 steps, as a consequence of the increasing
competition. Treefall and gap formation becomes
dominant after n1 50 time steps and several
statistical measures (density, diversity, etc) now
remain stable in time. For that particular case, the
fractal dimension for both biomass and gap
distribution appears to be stationary. Starting from
Dg 1 2 (i.e. totally random) the fractal dimension of
gaps evolves towards a characteristic value linked
with the self-organized state.

We can easily show that this state is not dependent
on initial conditions, i.e. that the fractal structure and
self-similar dynamics are ‘‘attractors’’ of the model.
To probe this point, we have performed several
simulations starting from different initial densities of
trees. In this sense we can analyse to what extent the
random-like rules can destroy the initial information
leading to the same class of final pattern. All

simulations show a characteristic convergence to such
a final state.

At this state, the multifractal spectrum can be
calculated from our model. Using different pd values,
which lead to different densities of low canopy points,
the Dq spectrum was estimated. Figure 7 shows the
spectrum for pd =0.005, 0.01 and 0.03. As the
extinction probability is raised, the fractal dimension
(D0 = f (0)) grows towards D0 =2, as expected: the
system is more random in generating gaps. But, as we
can see, even in this situation a wide spectrum of
generalized dimensions is obtained, showing a
structured system. It is important to mention that if
only D0 were available, our conclusion would be a
‘‘random pattern’’. The multifractal approach allows
us to observe the system at a deeper resolution (see
Appendix).

4. Discussion

Far from equilibrium, even abiotic systems can
produce macroscopic, ordered patterns in space
evolving from microscopic chaos. This situation is
specially evident when dealing with biotic communi-
ties evolving in a terrestrial or aquatic ecosystem,
where similar patterns appears replicated at different
scales (Margalef, 1978; Solé, 1991). The gap
distribution in the BCI strongly suggests a connection
between complex patterns and complex dynamical
processes.

We have shown that a very simple CA model can
account for some relevant part of the observed com-
plexity of a rainforest when gap dynamics is present.
Our intention was not the analysis of a detailed model
of tree growth and interaction (see, for example,
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Shugart, 1984). Instead, we have studied a simple,
spatially extended model of forest succession involv-
ing the creation of low-canopy gaps. Starting from an
arbitrary set of trees, the system self-organizes itself
into a kind of critical state characterized by the
existence of self-similar spatial patterns together with
a self-similar time evolution characterizable through
the f−b Fourier spectrum, with b1 1. As this state is
reached, a ‘‘fractal succession’’ takes place where
pattern and process are similarly defined at many
length scales. The extent to which our results are
robust will need a more detailed study, but the
observed regularities seem to be in agreement with a
typical situation. The extension of our study to a
n-species ecosystem will be reported in a future
work.

On the other hand, gap self-similarity is not the only
possible situation in which this type of fractals can
emerge in forests. Neotropical forests are exceedingly
complex mosaics resulting from spatiotemporal
segregation of co-evolved food webs. Species diversity
depends, as mentioned above, on the existing spatial
heterogeneity. The underlying conjecture would be
that, in this sense, fractal structures must be present
at other levels of this class of biological organization.
Our simulation model shows that not only gap
distribution, but also biomass, shows fractal proper-
ties. If these results can be translated to real forests,
biomass (and may be productivity) would also show
such type of self-similar behaviour. Conversely, the
observed spatial patterns can give several clues for our
understanding of the underlying dynamical process.
Theoretical and computer models will be extremely
useful here to reproduce and explain the observed
patterns as well as to provide a quantitative measure
for the effect of external energy or human actions.

Our study shows that generic dynamical properties
can emerge from simple rules of forest growth. Our
approach is then in the methodology of complex
systems (Parisi, 1993; Ruthen, 1993). Of course a
more detailed model can be proposed, but if a critical
phenomenon is involved, then universal behaviour
can be expected (Binney et al., 1992). As a
consequence of critical behaviour, the details of
interactions are unimportant.

The present results can be very useful as a frame-
work for our understanding of how species diversity
is generated under non-equilibrium conditions (Con-
nell, 1978; Solé, 1991). It is our belief that, in a
constant environment where external perturbations
are very weak, the way in which the system evolves
to a complex state is linked with a critical phenom-
enon. At the critical state, all spatial and temporal
scales are involved. Biologically, it means that all the

opportunities are present, and so the highest diversity
is generated.
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R. May, R. Margalef, J. Flos, E. Gutiérrez, J. Bascompte,
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APPENDIX

The generalized dimensions can easily be calculated
from real data. In order to obtain such a spectrum of

dimensions, we first need to cover the set with a grid
of boxes of equal size. The total covered surface
should be normalized to size 1. Therefore, if N (e) is
the total number of boxes, e=(N (e))−1/2 is their
characteristic length.

Because of the discrete nature of our object, for a
given ek we have an integer number of low canopy
points inside each box. Let n (i ) and N (j ) be the
number of low canopy points in the i-th box and the
number of boxes containing j gap points, respectively.
Then the sum in eqn (3) in the main text will be:

Xq (e)= s
N(e)

i=1

pq
i

= s
N(e)

i=1 0 n (i )
NP 1

q

= s
jmax

j=1

N (j )0 j
NP 1

q

,

where NP is the total number of low canopy points in
the rain forest. Calculations become very simple with
the use of the distribution function N ( j ): the sum over
boxes (1103) transforms into a sum over occupation
numbers (110). For the calculation of the multi-
fractal spectrum, we need one of these ek values
small enough, but large enough, to include a
representative distribution of N ( j ) (for a discussion
see Falconer, 1990, and references therein). The stan-
dard procedure is to cover the set with several sets
of boxes of different sizes and then calculate the
slope of log[Xq (e)] vs log(e) (for a detailed study and
applications, see Meisel et al., 1992).

For the Barro Colorado Island we used
e=(1250)−1/2 1 1/35 (jmax =16) and e=1/20 for the
forest game (jmax =16, also). After the choice of an
adequate ek , Dq is estimated as:

Dq (ek )=
1

(q−1 ·
log[Xq (ek )]

log(ek )
.


