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In ‘‘Forest Spatial Dynamics with Gap Expansion: Total Gap Area and Gap Size Distribution’’ by
Kubo and co-workers, a cellular automata model of gap formation is introduced. The authors claim
that their model is able to recover some of the features of the real clearing dynamics, and apply their
results to a plot of a tropical rainforest in Panama. Using an analytic approximation to the model, they
are able to obtain two real observations that can be compared with real systems: the global density
of gaps r0 and the local density of gaps q0/0. Nevertheless, the gap size distribution is in most cases well
fit by an exponential function, although the real rainforest analysed fits clearly to a power-law. Some
previous work introduced the Forest Game (FG), a model of rainforest dynamics that included gap
formation. The FG has been tested with a plot of gap patchiness in the same rainforest. The FG is
able to account for the exact distribution that the map presented by Kubo and co-workers displays,
and we show that their model may give compatible distributions under certain conditions. Some other
comments about this paper and the two models might be relevant for the general discussion about gap
dynamics modelling.
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A simple model of lattice-structured forest has been
introduced by Kubo et al. (1996). The most general
model (KIF, from now on) is a cellular automata with
four free parameters. The authors work with a
two-state system: each cell might be in a state ‘‘gap’’
(0) or in a state ‘‘tree’’ (+), following their notation.
The rate of transition from a gap to a non-gap or vice
versa is most probably determined and controlled by
some parameters that depend on the global and the
local density of gaps and trees. To be specific,
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where z is the coordination number of the lattice
(z=2 in a one-dimensional system and z=4 in a
two-dimensional system with Neumann neighbor-
hood); n(0) and n(+) are the number of neighboring
sites in state gap or non-gap, respectively, and d, b,

d and b are the free parameters of the model. As can
be seen in the definition of the dynamical rules, d and
b can be thought of as the probabilities of a tree
falling or of a tree germinating, and both may acquire
a dependence of the global densities in the system. On
the other hand, a constraint may be introduced
because of the closeness of trees that are able to
produce seeds for new individuals or protection
against external disturbances (mainly wind). These
processes are taken into account by means of b and
d. In particular, the authors discuss a very interesting
observation performed, among others, over the real
rainforest in Barro Colorado Island (Panama): the
transition rate of a non-gap (defined as a tree taller
than 20 m in their plot) to a gap in 1984 increases with
the number of gaps surrounding it in 1983 [data from
Hubbell & Foster (1986)]. This means that it is
reasonable to introduce a parameter d that weights
this influence.

By using the so-called pair approximation (Harada
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& Iwasa, 1994), the authors derive a closed dynamical
system for the total density of gaps r0 and the local
gap density q0/0 as a function of the system parameters
(see equation 7a and 7b in Kubo et al., 1996). This
approximation is able to fit quite well with the results
from the simulations, not only the two quantities r0

and q0/0 but also the gap size distributions obtained
under certain conditions that will be discussed later.

Nevertheless, some problems arise when the
authors attempt to recover the pattern displayed by
a real rainforest. A certain amount of useful data to
test the models has been provided by Hubbell &
Foster (1986). Among these data, some maps of the
gap patchiness in a neotropical forest in Barro
Colorado Island (BCI) have been analysed. In figure
7 of Kubo et al. (1996), a map of 50 ha. of BCI is
represented and reproduced in our Fig. 1(a). It gives
information about gap formation in two consecutive
years, 1983 and 1984, which allows the authors to
make a direct estimation of their variables d, d and b.
A Neumann neighborhood is shown to be the best
election to fit the observed data, so the authors use it
to evaluate d, q0/0 and r0. In BCI map, a gap is defined
as a site (of size 5×5 m2 in the real forest) where the
height of the trees is lower than 20 m. Then, the global
and local densities r0 and q0/0 can be directly
computed from the map (they chose to evaluate them
over the 1983 plot). The determination of the set of
parameters PKIF = 4d=0.024, d=0.276, b=0.1775
and the set of expected outputs O= 4r0 =0.331, q0/

0=0.5805 is a good way of testing their model. If
given PKIF they obtain O, this would be a first sign of
a good approximation to the real system. However, as
they admit, none of the variants introduced in the
general model is able to recover the real data. Using
the expected values, they can obtain two values of b
and b that (in the pair approximation) give the desired
result. But this can be done for any two values of r0

and q0/0: they have two equations with two parameters
to be fixed. Their final conclusion is that the current
spatial pattern is not at equilibrium, so one guesses
that waiting long enough, their claim is that BCI
would achieve the values predicted by their model.

Some time ago (Solé & Manrubia, 1995a, b;
Manrubia & Solé, 1996) a new model of gap and tree
dynamics (the Forest Game, FG) was introduced.
This model intended to explain the pattern observed
in a map of BCI that had been published in a paper
by Welden et al. (1991) [see Fig. 1(b)] and in some
other tropical rainforests, where power-law distri-
butions of gap sizes and tree heights have been found
[see for instance data in Gentry (1990)]. Some possible
implications related to the appearance of these
power-laws will be discussed later. The map that

appeared in Welden et al. (1991) considered a gap
area of height below 10 m in 1983, 1984 or in both
years. The study of this spatial pattern has been
thorough and some conclusions were drawn from it:
the spatial forest structure is multifractal with a wide
spectrum of different gap sizes; the distribution of gap
sizes follows a very well-defined power law, and the
gap–gap correlation function is also a power law
(Manrubia and Solé, 1996). The FG was able to
account not only for the qualitative, but also for the
quantitative features of BCI.

Our model is a cellular automaton with periodic
boundary conditions. Each cell might be in a state
represented by a real number between zero and a
maximum height hc that intends to mimic the height
of the tree occupying that site. Each tree is allowed to
grow, to fall and create a gap, and to be born if the
cell is empty. In the FG, interaction among nearest
trees takes place at two levels. First, there is a
competition for resources (light, nutrients, space, . . .)
that influences the rate of growth. Second, each time
a tree falls, it may form a gap in the canopy depending
on its biomass. Define h(i, j; t) as the height at time

F. 1. Two maps of Barro Colorado Island with a different
definition of ‘‘gap’’, or low canopy points, represented as black
dots. (a) Trees lower than 20 m are considered gaps. Data from
Hubbell & Foster (1986). (b) Trees lower than 10 m are gaps. Data
from Welden et al. (1991). In both maps, black sites fit the previous
criteria in years 1983 and/or 1984. The axes display the size of the
plot in pixels. Each pixel represents an area of 5×5 m2, giving thus
a total area of 50 ha.
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t of an automaton located in site i, j in the lattice. The
specific rules of the model are as follows.

(i) Birth: if h(i, j; t)=0, the h(i, j; t+1)= h0 with
probability pb .

(ii) Growth: if hc q h(i, j; t)q 0, then

h(i, j; t+1)= h(i, j; t)+U$1−6gz s
�kl�

h(k, l; t)7%
where the sum is restricted to the z nearest
neighbors. The function U(x) is zero for xQ 0
and x for xq 0. It also defines the units of the
height of our trees, which could be assumed to
be in meters.

(iii) Death: if h(i, j; t)e hc then h(i, j; t+1)=0, or
independent of height, a tree falls down with
probability pd .

(iv) Gap formation: when a tree h(i, j; t) falls
down, a certain variable amount of trees
surrounding it are also removed according to
the condition

h(i, j; t)Q s
�kl�

h(k, l; t).

This mean that an amount of biomass at most
equal to the one of the falling tree is also
removed in a neighborhood defined by the
previous inequality.

Our free parameters are pb , pd and g. The two limiting
sizes h0 and hc are the minimum and maximum height
allowed. A new germinated tree is assigned the
minimum height h0 =0.1 m in our simulations. The
maximum height (seldom attained for realistic
parameters) is hc =30 m. On the other hand, it is
known that trees standing above the surrounding
canopy have a greater probability of falling (Hubbell
& Foster, 1986). We work in a square lattice with
Moore neighborhood, so the coordination number is
z=8. The parameter g tries to take into account all
the competition among nearest trees for resources. It
is the main parameter in controling the distribution of
heights in the forest.

The parameter pb was fixed to value 0.5 in our first
simulations. This allowed the construction of a phase
space for the model [see for example Solé & Manrubia
(1995b)]. There is a very interesting part of this space
of parameters where the most complex behaviors are
observed. In particular, the values of pd for which this
holds are between 1–2% (mortality per year), in the
range calculated to be the average of many tropical
rainforests [see for example table 2 in Lieberman et al.
(1985)] and g has a wider range, 0.5Q gQ 10. The
values of g cannot be directly computed, but we

observed that the pattern of BCI gaps for height
below 10 m was reproduced in all its details
(fractality, correlation function and gap distribution)
for a value of g1 2. If the value of pb is changed, the
domain where complex behavior is observed shifts
slightly in the phase space, but there is no qualitative
change in it.

We have attempted to recover the pattern of
Fig. 1(a). To do so, it was necessary to change the
parameters in our model. With our definition of
gap (h(i, j )=0), it was necessary to increase the
mortality per year to obtain a high density of
clearings. In our model it is not possible to ‘‘redefine’’
a gap by simply taking taller trees, because height is
strongly dependent on g, and the dynamics of gap
formation and tree growth are in some sense
decoupled. By using the set of parameters
PFG = 4pb =0.3, pd =0.1, g=15, the density
r0 =0.36 is obtained. This is almost the same value
that the KIF model gives for the set of parameters
PKIF. It is worth noticing that the values obtained for
q0/0 with both models differ from that measured in
BCI. Both models give q0/0 1 0.44, a value clearly
deviating from the 0.58 expected. This is related to the
appearance of several gaps ‘‘larger than expected by
chance’’ in the real system.

The main point of our comment is related to the
actual gap size distribution. This is a very informative
measure that can be easily performed over Fig 1(a).
In Fig. 2 we have represented in the same plot the
distributions obtained from Fig. 1(a), KIF model
(parameters PKIF), FG model (parameters PFG) and a
pure percolation pattern with density rPP =0.35. It is
very clear that the real distribution is well fit by a
power-law with an exponent aBCI 1 1.6 through
almost three decades. The FG model gives an
exponent equal to this value if we consider statistical
fluctuations, aFG 1 1.7. The KIF model also repro-
duces the spatial distribution of gaps with an
exponent close to 1.6. In fact, both r0 and q0/0 are
averages over Fig. 1(a), thus many different gap
distributions could in principle be adjusted to them.
However, the distribution of gaps captures some more
features of the pattern that we think should be
recovered by a reliable model. Both KIF and FG
models seem to adjust quite well to the actual gap
distribution for small gap sizes. As can be clearly seen,
both deviate from BCI distribution for large sizes.
Some comments seem to be of interest here. First,
although both models give higher distributions than
the pure percolation distribution, they do not recover
the largest gaps in the real forest. Pure percolation
presents a deviation to an exponential distribution
because the density that has been fixed is still far from
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F. 2. Normalized gap distribution for Barro Colorado Island
(BCI), for the two models Kubo–Iwasa–Furumoto (KIF) and
Forest Game (FG), and for a pure percolation (PP) system. k is the
size of the gap with Neumann neighborhood, and p(k) is the
probability of finding a gap of size k. Real data are well fit by a
power-law distribution, p(k) A k−aBCI with an exponent 11.6. The
simulation for the KIF model was run over a lattice of size
100×100 during 1000 time steps after discarding 200 transients,
a period necessary for the system to settle in a statically stationary
state. The simulation for the FG was run over a 200×200 lattice
and average over 1000 time steps after discarding 500 transients.
As can be seen, both models approach closely the BCI distribution
for small and medium gap sizes. The parameters used for each
simulation are specified in the main text. The distribution for the
purely percolating system was obtained by averaging 10
independent configurations of size 100×100 with density
rPP 1 0.35. The points in the distributions have been logarithmi-
cally binned in boxes of powers of two. Key: — BCI, — — KIF,
- - - FG, . . . PP.

of gaps due to a lack of screening depends on the
height of nearest neighbors, next-to-nearest neigh-
bors, and so on. This may explain the appearance of
long-range correlations and thus the formation of
gaps larger than expected from a simple model as pure
percolation (Stauffer & Aharony, 1991). On the other
hand, it is our belief that both KIF and FG models
belong to the same universality class that pure
percolation thus short-range correlations (introduced
in the rules of the models) cannot be responsible
(close to a critical point) for the formation of a
different pattern (Binney et al., 1993). In other words,
they will never be able to account for very large gaps
with fixed density for any set of parameters. This fact
is included in the dynamic rules.

A second step towards the analysis of the spatial
gap distribution might be to calculate the fractality of
the pattern or the gap–gap correlation function. This
last measure is defined as the average number of gaps
(located in r' at a distance d= =r− r'= from a site in
the gap state (in r)), or

C(d)=
1
N

s
=r− r'=

r(r)r(r')

where r(r)=1 for a gap site and is equal to zero for
a cell with a tree. The normalization factor is
N= nn × r0, where nn is the maximum number of
neighbors at distance d. The two-point correlation
function C(d) is simply the probability for an
observer located in a gap of finding a gap when
choosing at random a site at distance d. From the
definition of C(d), the two values used in the pair
approximation are now C(0)= r0 and C(1)= q0/0.
When the system that the models try to recover has
an exponentially decaying correlation function [this is
the rule far from a critical point, C(d) A e−d], it is
reasonable to attempt an analytic approach to the
problem just by taking into account C(0) and C(1)
and discarding higher order terms. But when the
modeled system is close to a critical point, where
C(d) A d−a, this approximation breaks down, due to
the appearance of long-range correlations. This
explains the failure of the pair approximation in the
case of BCI. The right global and local densities can
only be obtained by considering terms in C(d) up to
a system’s correlation length [see Binney et al. (1993)
for further explanation about critical phenomena].

A second point which is worth analysing in some
detail concerns the following statement made by
Kubo et al. (1986), p. 241: ‘‘when we observe
deviation between the predicted equilibrium compo-
sition of the forest and the observed pattern, we may
conclude that the current spatial pattern is not at

the critical percolating point, where power-law
distributions with a cut-off only due to finite system
size would be observed. The modified models with
short-range correlations are not able to avoid this
finite size effect. Second, recall the mechanism of gap
formation in the models. One (KIF) considers nearest
neighbors gap density to adjust the probability of
falling or germinating, and another (FG) simply
allows the formation of a gap depending on the
biomass of a randomly chosen tree. Both mechanisms
are similar as seen by comparing the KIF and FG
distributions in Fig. 2. Nevertheless, a lack of larger
gaps [compared with Fig. 1(a)] is observed. This
probably means that another mechanism is responsible
for the formation of them. A comparison between the
two maps in Fig. 1 might give some insight about this
problem. If a gap is defined at height 20 m, one
realises that the ‘‘new’’ gap sites in Fig. 1(a)
[compared with Fig. 1(b)] appear mainly close to gaps
present at height 10 m. It could be that the formation



0.0

0.2

0.4

0.6

0.8

1.0

Time steps

50 100 150 200 2500

ρ 0
 (

ga
p

 d
en

si
ty

)

   163

equilibrium’’. This is also easy to test in the model.
The set of parameters chosen to reproduce the gap
patchiness of BCI in Fig. 1(a) fixes the time step of
the model to be about 1 year. This is the same election
that was performed in the FG. Then, just by looking
at the time that the model needs to reach a statistically
stable state, one may guess the approximate number
of years that BCI would need to set in this state of
equilibrium if the model is going to capture the
essential dynamics of the real rainforest. Beginning
with an initial condition far from this equilibrium
(empty forest, all sites in gap state), we have
calculated the convergence time (in simulation time
steps) needed to reach the equilibrium (see Fig. 3).
For the KIF model, this time is no more than 50 time
steps, that would mean about 50 years. The
convergence time is somewhat longer for the FG, due
to the multiple states available to each site and to the
initial condition: just 50% of minimum size trees
randomly scattered in the forest. The variation of r0

with time is depicted in Fig. 3 for two different sistem
sizes, 100×100 and 200×200, both comparable to
the actual size of Fig. 1(a). There are estimations of
the time that BCI has remained undisturbed. For
example, in Gentry (1990, p. 522): ‘‘Radiocarbon
dating indicates that the last of these clearings was cut
more than 550 years ago, and the phytolit record
demonstrates that the forest was never cleared for
maize agriculture.’’ This leaves us with an undis-
turbed forest for at least 500 years, which is more than
a factor 10 to the time that KIF model requires to set
in an equilibrium state.

It is our belief that models should take into account
some other features of real systems that have not been

considered and that might be relevant for their
dynamics and the observed macroscopic patterns.
Some work has been done in the direction of
minimising the number of variables needed to
describe these large systems with many degrees of
freedom. In particular, it has been conjectured that
the interaction among individuals in a rainforest
might poise the system to a so-called critical state
[Solé and Manrubia, 1995a; see Solé et al. (1996) for
a review of critical phenomena]. When a system is
found in a critical state, it means this system is far
from the thermodynamic equilibrium, but this does
not mean it is not in a stable state. The very dynamic
rules may keep the system in a statistically stationary
state, in which the distributions of macroscopic
magnitudes are constant in time. This critical state
would imply that the rainforest dynamics has as a
natural output (1) power-law distributions in relevant
magnitudes, including temporal fluctuations and (2)
the formation of fractal patterns in space. Some data
from real rainforests seem to support this conjecture.
In particular, apart from gap distributions, tree height
distributions have also been found to follow clear
power-laws [Solé and Manrubia (unpublished data)
from data in Gentry (1990)]. The conjecture of
‘‘criticality’’ for the rainforest supports the approxi-
mation of using minimal models for their description.
In a critical state, small details can be skipped if one
tries to explain the macroscopic patterns (both in time
and in space), and the use of minimal models is
completely justified (Binney et al., 1993).

Our concerns about the discussed models are
basically dependent on its ability to generate the
largest gaps observed in the real rainforest. On the
other hand, our previous discussion about criticality
does not apply in the KIF case: this model does not
poise the system to a critical state, where power laws
should be observed. As the authors show, the model
gives exponential distributions for a wide set of
parameters. In fact, they do not present a single
example with a power-law distribution, although we
have shown that this is the case for the set of
parameters PKIF. Nevertheless, we think that this
model could be very useful perhaps to represent some
other type of forests, for instance a case that they
report, a subalpine spruce-fir forest with a gap area
distribution that has been found to be a negative
exponential (Foster & Reiners, 1986). It is clear that
the observation of gaps causing more gaps has to be
taken into account, but in the modeling of a real
forest, the interaction at the level of growth must also
be considered. In this sense, the FG and KIF models
might complement each other and be a first step
towards the understanding of the general problem of

F. 3. Convergency of the models to the statistically stable state.
As can be seen, the KIF model reaches equilibrium in about 50 time
steps, irrespectively of the system size. The FG needs some more
time because it is a multistate system and each automaton has a
multiplicity of states. Nevertheless, the time required to reach the
equilibrium density is about 200 time steps. Key: — NKIF =100, - - -
NKIF =200, – · – · – NFG =200, – ° – ° – NFG =100.
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not only gap formation, but also the vertical structure
of the forest.

The authors wish to thank Jodi Delgado for his kind
computer assessment. This work has been supported by a
grant DGYCIT PB94-1195.
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