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We study a dynamic model of ecosystems where an immigration #ux assembles the species
community and maintains its biodiversity. This framework is particularly relevant for insular
ecosystems. Population dynamics is represented either as an individual-based model or as a set
of deterministic equations for population abundances. Local extinctions and immigrations
balance at a statistically stationary state where biodiversity #uctuates around a constant mean
value. We "nd a number of scaling laws characterizing this stationary state. In particular, the
number of species increases as a power law of the immigration rate. With additional assump-
tions on the immigration #ux, we obtain species}area relationships in agreement with observa-
tions for archipelagos. We also "nd power-law distributions for species abundances and
lifetimes.
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1. Introduction

One of the most interesting statistical relation-
ships in biology is the species}area law, which
relates the area of a habitat and the number of
species coexisting there. Larger areas harbor
more species than smaller ones; this observation
goes back to Alexander von Humboldt in the
19th century (see Rosenzweig, 1999). The most
commonly used quantitative species}area laws
have the form

SJAz, (1)

(see also He & Legendre, 1996). Such relation-
ships are obtained from the observed species
numbers S

i
in a number of geographically similar

units with areas A
i
. Examples are bird species in

islands of the same archipelago, plant species in
nested sampling areas of a contiguous habitat, or
mammals in entire continents (Rosenzweig,
1995).

Thus, these observations cover quite di!erent
species and habitat types and extend over a
0022}5193/01/170011#24 $35.00/0
remarkable range of size scales, which points at
a universal statistical explanation. The exponent
z, of course, is not universal but re#ects this
diversity. Observed values range from 0.13 to
0.18 for nested areas in the mainland, from 0.25
to 0.33, from 0.5 to 0.8, and from 0.17 to 0.72 for
groups of nearby islands, archipelagos, and habi-
tat islands, respectively (Rosenzweig, 1995; Begon
et al., 1998). Hence, the growth of diversity is
always sublinear.

In this paper, we present elements of a scaling
theory for ecosystems, which provides a concep-
tual framework to understand the appearance of
species}area relationships. We analyse di!erent
dynamical models of co-evolving populations
subject to an immigration #ux. A number of
scaling laws are obtained for ecological quantit-
ies of interest, which include the distribution of
species lifetimes and biomasses. The number of
coexisting species, in particular, is found to be
a power of the immigration rate,

SJIa. (2)
( 2001 Academic Press
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Here, I is de"ned as the average number of
new species (i.e. species not yet present in the
ecosystem) arriving per unit of time. The
exponent takes values typically in a narrow
range, 0.4(a)1, depending on the system
parameters. With reasonable assumptions on
the area dependence of the immigration #ux,
this translates indeed into species}area laws
of the form (1). The latter thus appear important
but are not the only manifestations of scaling in
ecosystems.

In this model, biodiversity is established and
maintained by a constant average #ux of immi-
grating species. At long times, the system always
evolves to a stationary state where immigrations
and local extinctions balance. This stationary
state is characterized by a continuous turnover of
species and time independent distributions for
ecological variables like the number of species,
the number of trophic levels, the number of links
per species, or the species abundances. The scal-
ing laws (1) and (2) refer to the average values of
species number and immigration #ux. The actual
time series for a given ecosystem, S (t) and I(t),
#uctuate around the averages, and these #uctu-
ations are determined by the stationary distribu-
tions. We emphasize that the stationary state is
strongly driven: It depends on a non-zero immi-
gration #ux and, hence, it cannot be described by
a "xed point of population dynamics.

This dynamical view of ecosystems goes back
to the seminal work of MacArthur & Wilson
(1963). Their theory of island biogeography ex-
plains the number of species as given by a dynam-
ical balance between the arrival of new species
(immigration) and local extinction. The resulting
stationary state has been called a dynamical equi-
librium. Many "eld studies and statistical analysis
of data have tested this theory. They range from
island defaunation experiments (Simberlo!
& Wilson, 1969) and subsequent analysis (Sim-
berlo!, 1969; Heatwole & Levins, 1972) to the
study of insular biodiversity patterns (Gilpin
& Diamond, 1976) and of #uctuations of the
number of species (Gilpin & Diamond, 1980,
1981; Manne et al., 1998). On the theoretical side,
the lack of explanatory power of MacArthur and
Wilson's theory has been criticized (Williamson,
1989; Whittaker, 1992), and corrections have
been proposed (Simberlo!, 1969). In our view, its
major shortcoming is the lack of a foundation on
population dynamics.

The dynamical view should be contrasted with
the static picture of ecosystems as stable "xed
points of population dynamics. A famous result
for static networks is May's theorem (1972): An
ecosystem of S<1 species connected randomly
by C links whose strengths are drawn from a dis-
tribution with average 0 and variance p2 will
have (with probability 1) no stable "xed point if
p2CS'1. This result, which has been slightly
corrected later (Cohen & Newman, 1985), sets an
upper limit to the amount of complexity allowed
by the stability condition. Clearly, the static pic-
ture is not appropriate to describe ecosystems
with a continuous turnover of species. May's
theorem does not apply to these networks since
the links between species are not random vari-
ables but are themselves subject to selection. In-
deed, the species number found in our model
systems are often much larger than that expected
from May's theorem.

A number of authors obtain species area
relationships from models without explicit popu-
lation dynamics. Preston (1962) derived a power-
law relationship from the assumption that the
abundance of species is characterized by
a log}normal distribution. This assumption has
been questioned, however, since "eld studies sup-
port broader distributions. Harte et al. (1999)
obtained a species}area relationship of the form
(1) from a self-similarity hypothesis for the spatial
distribution of individuals. Their model thus ap-
plies to nested areas, however, the assumption of
self-similarity lacks a dynamical justi"cation to
date. An analytical relation between the spatial
distribution and the species distribution was sub-
sequently derived (Banavar et al., 1999). Several
recent models try to include immigration or
speciation in an e!ective way, still without
explicit population dynamics. Wissel (1992)
modeled an ecosystem of similar species, combin-
ing the e!ects of environmental and demographic
stochasticity with interspecies competition. Dur-
rett & Levin (1996) proposed a model where
speciation is coupled to contact dynamics to
mimic ecological processes, and obtained nearly
power law species area relationships. Loreau &
Moquet (1999) modeled immigrations of plant
species from a large pool to an island, including
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explicit competition for space. A recent model
for species turnover has reproduced power-law
distributions for species abundances and species
lifetimes as observed in "eld studies (SoleH et al.,
2000).

Recent studies based on explicit population
dynamics include Pelletier (1999), who coupled
a di!usion mechanism to spatial noise and
obtained a power law species area relationship.
In this model, however, there is no explicit inter-
action among species. Caldarelli et al. (1998)
and Drossel et al. (2001) coupled population
dynamics to speciation and obtained food webs
with a broad distribution of biodiversity.
Another class of models which combine immigra-
tions and population dynamics is that of species
assembly (Post & Pimm, 1983; Drake, 1990;
Case, 1990; Morton & Law, 1997; Happel &
Stadler, 1998; Schreiber & Gutierrez, 1998). In
these models, a community is constructed
through local immigrations from a regional
species pool. After every immigration, the new
community is tested for persistence (i.e. the prop-
erty that no species gets extinct even in the limit
of in"nite time). Imposing the condition of
persistence limits these models to the regime
of rare immigrations, while in our approach
the immigration rate is an independent
parameter.

It is clear that any consistent theory for long-
term co-evolution cannot be based on population
dynamics alone. It has to include processes that
create new species and modify the trophic links of
the network. These processes are adaptive muta-
tions, speciations, and immigrations. As dis-
cussed above, they act as driving forces that
prevent the system from settling at a stable "xed
point of population dynamics. Here, we focus on
the case where immigration is the dominant pro-
cess, which may be most appropriate for relative-
ly small insular ecosystems receiving a #ux of
species arriving from a larger &continental' pool.
Networks where speciations and mutations are
relevant driving forces as well are discussed in
separate papers (LaK ssig et al., 2001; Bastolla et al.,
in preparation).

Since this model has no spatial structure, it is
applicable only to cases where spatial heterogen-
eities (e.g. in the population densities) can be
neglected. This is clearly a more reasonable
assumption for isolated islands (or entire archi-
pelagos) than for groups of islands or nested
continental areas, where migration #uxes be-
tween the single units become important. It is
tempting to speculate, of course, that the dynam-
ical mechanism described here is generic.

Immigration-driven systems have two impor-
tant time scales: the relaxation time q of popula-
tion dynamics and the average time between
immigrations, 1/I. The former depends on the
size and the interactions of the network, the latter
is taken here as an independent parameter. Their
ratio turns out to determine the scaling proper-
ties of the ecosystem. If immigrations are rare
(qI;1), the population dynamics gets close to
stable "xed points in between. The immigrant
species are merely a sequence of potential in-
vaders of these stable communities; the ecological
properties of these slowly driven networks are
asymptotically independent of the immigration
rate. In the opposite limit (qI<1), immigrations
are so frequent that they essentially randomize
the species network. At intermediate immigration
rates, both immigrations and ecological dynam-
ics play an important role, and the stationary
state depends on I in a non-trivial way.
This is exempli"ed by the power law (2) of the
species number as well as by other characteristics
of the ecosystem. The number of trophic levels
increases with I, consistently with the observa-
tion that food chain length is positively corre-
lated to the size of the ecosystem (Schoener, 1989)
and with a recent simulation (Spencer, 1997).
The distribution of species abundances has
a power-law shape, with an exponent close to!1
and slowly decreasing with the immigration
rate. The "rst result is in agreement with "eld
observations (Pielou, 1969), considerations based
on the theory of multiplicative processes (Kerner,
1957; Sornette, 1998; Biham et al., 1998) and
analytic results from a similar model (SoleH et al.,
2000), and seems to be rather general. The dis-
tribution of species lifetimes has also, in an
intermediate range, almost power-law shape,
with an exponent close to !2, and slowly
decreasing with the immigration rate, as ex-
pected. This result is also in agreement with
"eld observations (Keitt & Marquet, 1996;
Keitt & Stanley, 1998) and with the results of
SoleH et al. (2000).
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It would be of course interesting to compare
eqn (2) directly to observations, but one would
need a set of islands of comparable area and
geographical location and varying distance from
the continent. Thus, in order to compare eqn. (2)
to observed species}area laws, we have to assume
a functional relationship between immigration
rate and area. First, we assume that I is propor-
tional to the square root of the area: for instance,
it can be proportional to the diameter of the
island seen from the continent (MacArthur &
Wilson, 1963). This case is relevant for situations
where there is a unique source of immigrants.
Remarkably, we then obtain eqn (1) with an e!ec-
tive exponent around 0.5, in good agreement with
the value observed for entire archipelagos or iso-
lated islands. Second, with an immigration rate
independent of area, we obtain a logarithmic
species}area relationship, SJlog(A ), in agree-
ment with observations for the central cluster of
Salomon islands. In this case, the connectivity of
an island plays indeed a bigger role than its area
in determining the immigration rate. In inter-
mediate situations, the species}area law obtain-
able from our model should lie between these two
behaviors. It is tempting to speculate that di!er-
ent exponents of the species area relationship
observed for di!erent groups of nearby islands,
and usually smaller than 0.5, could re#ect mainly
di!erent relationships between immigration rate
and area.

This paper is organized as follows. Section 2
contains the stochastic Individual Based Model
of ecological dynamics. The alternative formula-
tion of this dynamics as a deterministic
Lotka}Volterra system follows in Section 3.
The results for both cases are presented together
in Section 4 and related to the framework of
MacArthur and Wilson's phenomenological
theory in Section 5. The paper concludes with
a discussion.

2. An Individual Based Model

Recently, population ecology has started to use
individual-based (or individual-oriented) models
(IBM) as a complementary tool in the study of
ecological dynamics (Lomnicki, 1999; Grimm
et al., 1999). One of the main interests of such an
approach is that it allows the explicit modeling of
individual characteristics, like the age of the indi-
viduals in a population (in#uencing the time of
breeding or the moment at which they die), or the
energy that they store and require to move and
survive (Bascompte et al., 1997). Most IBM stud-
ies refer to concrete problems where a few species
of known characteristics interact to produce
a well-de"ned behavior or pattern, which the
IBM should recover or predict (Fahse et al., 1998;
Spencer, 1997). Another interest of IBM is in
what has been termed virtual ecology: The com-
parison between real data and simulated data
obtained from a system where realistic restric-
tions have been considered might allow the
design of better protocols for recruitment and
observation (Berger et al., 1999; Hall & Halle,
1999).

Simulations of very large systems with many
individuals and/or many species have not been
undertaken until recently because of computa-
tional limitations. Thus, the IBM approach was
restricted to few species in relatively small lattices
representing real space, with one to few indi-
viduals per lattice site. More ambitious problems,
like the relation between theoretical results for
deterministic continuous models and their IBM
counterpart, were addressed only recently (Keitt,
1997). Some authors derived time-continuous
models from the more basic description of the
#ow of energy between constituents (Svirezhev,
1997) or among individuals (Wilson, 1998; SoleH
et al., 1999). This is indeed a very relevant point.
One would expect that the coarse-grained higher-
level description represented by deterministic
models captures the essential features of lower-
level individual-based models. This is in fact the
philosophy behind our approach: In the IBM,
as well as in the higher-level models to be intro-
duced in the forthcoming sections, we study the
predictions of the model from a statistical point
of view, ignoring details that will necessarily be
di!erent in di!erent models.

2.1. ECOLOGICAL DYNAMICS

Consider a large area A
cont

on which a max-
imum number M

h
of basal species coexist and up

to M
a
animal species compete for resources. The

ecological interactions in this community will be



TABLE 1
Parameters in the individual based model

p
d

Death probability
d Dissipation rate
N

h
Max. Ind. in basal species (Kisland area)

B('d) Basal growth
C(m

i
, m

j
)3[0, E] Energy obtained by i when eating j

E
rep

K2E Reproduction energy
d Energy when born
l"3, 4 Number of preys per predator
M

h
Max. number of basal species

M
a

Max. number of animal species
I
0

Bare immigration rate
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de"ned through a matrix with entries C(m
i
, m

j
).

Depending on the values of C(m
i
, m

j
) and

C(m
j
, m

i
) we will determine the trophic relation-

ship between individual i of species m
i
and indi-

vidual j of species m
j
, as we explain later. We have

considered two possible algorithms to determine
the non-zero elements of the interaction matrix.
Our "rst election corresponds to the cascade
model (Cohen et al., 1990), which returns a net-
work with topological properties comparable to
those of real ecosystems. In this case, the distinc-
tion between basal and animal species automati-
cally arises from the ecological relationships
given by the interaction matrix. We de"ne
M"M

h
#M

a
to be the total number of species

in the system. If the number m
i
"1,2,M speci-

"es a pecking order for feeding, the algorithm
works as follows: Any species m

i
can feed only on

species m
j

which is lower in the order, that is,
m

j
(m

i
. This avoids the formation of loops.

A link to any of the potential prey species is
established with probability l/M. If the value of
l is "xed (according to real observations) to be
around four, this model returns the correct pro-
portions of basal, intermediate, and top species,
a maximum number of levels typically around
ten, and a distribution of the number of predators
per prey which agrees with "eld observations
(Cohen et al., 1990).

A second possibility for the interaction matrix
consists in randomly assigning l preys to each of
the M

a
animal species. This would correspond

to a disordered situation where no processes
have acted in order to select the topology of the
ecological network. In this case, and only for
implementation purposes, basal species occupy
positions m

i
"1,2,M

h
, and animal species

occupy m
i
"M

h
#1,2 , (M

h
#M

a
). The inter-

action matrix has the form

A
0 0

C (m
a
, m

h
) C(m

a
, m

a
)B ,

where m
h

and m
a

indicate basal species and ani-
mals, respectively. The statistical properties of
the system do not depend on the topology of the
interaction matrix. As we will see, the relevant
quantities take the same form in the cascade
model case (CM) and in the random matrix case
(RM). For both algorithms, the values of the
matrix elements are randomly chosen from a uni-
form distribution in [0, E], where E3[20, 200]
(see Table 1). The value of the matrix coe$cients
is proportional to the energy gained by indi-
vidual i when feeding on individual j and repres-
ents a sort of assimilation e$ciency (see below).

In determining the matrix C, we have essen-
tially de"ned a structured ecosystem in a very
large area with many species. This is what we
consider to be the continent, which will be the
source of immigration of propagules to an island
of area N

h
. This last quantity can be understood

as the maximum number of patches covered by
grass, for instance, and acts as a main limiting
value (together with the basal growth, to be
de"ned) for the number of animals that will
inhabit the island.

At time t, and once we properly de"ne the
immigration mechanism, we will have a number
n
h
(t) of individuals in basal species present on the

island and a number n
a
(t) of individuals belong-

ing to animal species. The total number of indi-
viduals in a wide sense (say patches of grass plus
animals) is n(t)"n

h
(t)#n

a
(t). Each individual

is characterized by an energy e(i). Individuals
reproduce provided their value of e(i) is large
enough. Basal species increase their energy at
a constant rate. Animals dissipate energy as time
elapses, and increase the value of e(i) through
predation, which happens stochastically. At each
time step the following rules are implemented:

1. Pair formation. At each time step, we randomly
form n(t)/2 pairs of individuals, indepen-
dently of their speci"c a$liation. If n(t) is odd,
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one individual remains without partner. Dif-
ferent possibilities are (i) h}h pair: the two
grass patches are not consumed by animals
and keep their energy, (ii) a}h pair: if the
matrix element C (m

a
, m

h
) is positive (meaning

that the individual a feeds on h), predation is
possible, (iii) a}a pair, allowing predation be-
tween di!erent animal species depending on
the matrix coe$cients.*

2. Predation and Feeding. Either of the indivi-
duals in each pair (i, j ) can feed on its partner,
according to the ecological relations de"ned
in the matrix C(m

i
, m

j
). Predation happens

when C(m
i
, m

j
)O0 and C(m

j
, m

i
)"0. In this

case,

e(i)Pe(i)#C (m
i
, m

j
)]

e ( j )
E

rep

,

e( j )P0,

where E
rep

is an energy scale related to repro-
duction, that will be de"ned below. The energy
received is proportional to the matrix element,
but also to the energy stored in the predated
individual. In this sense, to eat a new born is
not equivalent to eating an adult close to its
reproductive energy (which "xes the max-
imum energy). Furthermore, an individual
cannot increase its energy beyond E#E

rep
. In

addition, if the value of the fraction e ( j )/E
rep

is larger than unity the rule is modi"ed as
e (i)Pe(i)#C(m

i
, m

j
).

If both C (m
i
, m

j
) and C (m

j
, m

i
) are non-zero

(or both zero), no interaction takes place.
3. Basal growth. Every individual belonging to

a basal species increases its energy at each time
*This rule can be understood as a rough picture of
a space-explicit aproach since, although there is no repres-
entation of the physical position of an individual, the inter-
action among species is neither global nor simultaneous.
For example, if a species and its feeding source both occur at
low densities, the probability for that species to survive is
small mainly due to stochastic e!ects: It takes some time to
&&"nd'' the prey, as would happen with a blind search in real
space. In this sense, the random pair formation is subopti-
mal when compared to global deterministic interaction (see
below), and closer to an explicit space formulation. Actually,
for n

h
(t)'n

a
(t)/2, this pair formation is indistinguishable

from the real space formulation in which animals can oc-
cupy a randomly chosen site at each time step (uncorrelated
movement).
step by a net amount B,

e (i)Pe (i)#B if m
i
3[1, M

h
].

4. Dissipation. At each time step, and for each
of the animals alive, e(i)Pe(i)!d, where d
de"nes the dissipation rate. It takes the same
value for all species in our model.

5. Reproduction. If e(i)*E
rep

, the individual i is
allowed to reproduce. In the case of basal
species, the new individual is introduced into
the system provided there is place, i.e. if
n
h
(t)(N

h
. The individual which reproduces

loses an amount of energy d,

e(i)Pe(i)!d,

e (k)Pd,

where e(k) is the energy of the new born.
6. Death. An individual can die for three di!er-

ent reasons: If its energy reaches zero, if it is
eaten by a predator, and with a "xed probabil-
ity p

d
per time step.

Table 1 resumes the parameters of the model
and the range of values used in our simulations.
We will present results for some representative
cases. No qualitative di!erences were observed
for comparable sets of parameters.

2.2. MODELING IMMIGRATIONS

We can think of the initial matrix C(m
i
, m

j
) as

representing predator}prey relationships among
a pool of species in the continent, where a very
large area (with its resources) allows the coexist-
ence of all possible species (in our case
M"M

h
#M

a
). An island has a "nite area

N
h
and harbors only a subset M

isl
of M.

The immigration #ux I
0

represents the number
of individuals arriving from the continent to the
island, and can take values from the set
M21/4, 1/3, 1/2, 1, 2, 3,2N only. If I

0
"q*1,

then q new individuals randomly chosen from
any of the possible M species in the pool arrive at
the island, at each time step. If I

0
"1/q(1, one

individual is introduced every q time steps. Other
situations, which imply a less smooth #ux, are
excluded in the following. This bare immigration
#ux is independent of the speci"c composition of
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the system. On the other hand, the probability
that a species is new on the island or is accepted
in the community does depend on the set of
established species. When the simulation starts,
basal species have a higher probability of co-
lonizing, while animal species can become
persistent only when the former are already es-
tablished. The #ux of new immigrants (the net
#ux) varies in time, as observed in real situ-
ations.- For moderate to large I

0
(there are

enough proposals for new species, many di!erent
individuals try to colonize the island), the ob-
served ecosystem is shaped through ecological
interactions. In this regime, the introduction of
di!erential immigration rates does not produce
qualitative changes in the ecosystem properties.

Our simulations show that the average number
of species coexisting on the island depends very
strongly on the vertical transmission of resources,
as is well known to happen in real ecosystems
(Rosenzweig, 1995). High dissipation relative to
basal growth (d close to B) turns into a few
species on the island. For d;B (a factor of 2 or
3 may su$ce) the average number of species
coexisting when I

0
is large enough approaches

the maximum number M.
With the addition of a constant #ux of species

from the continent to the island, the system is
poised to a state of dynamical equilibrium, where
the number of species that disappear due to the
ecological interactions or to demographic
stochasticity is balanced by the new incoming
species. The immigration rate might produce
a rescue e!ect for species with few individuals,
close to extinction, and at the same time includes
in a natural way one form of environmental
stochasticity.

Thus, the incoming #ux of individuals from the
continent, the immigration rate, becomes our
main variable. By changing its intensity, we can
calculate the average number of species S present
in the statistically stable regime on an area
A,N

h
. Moreover, assuming a relation between

the immigration rate I
0

and the area A, we will
derive the species}area law resulting from the
-In the next section we will use the net #ux I instead of
I
0

to characterize immigration. In Section 5 we relate both
quantities by taking into account the species present on the
island.
ecological dynamics of the IBM and compare it
with "eld data.

3. Deterministic Continuous Model

In this section, we present the deterministic
continuous models of population dynamics
adopted in our simulations. All individuals
belonging to a species are grouped together and
represented through a single dynamic variable,
the density of biomass (or abundance) of species
i at time t, N

i
(t). In contrast to the IBM, where

interaction among individuals was stochastic,
here it is deterministic.

3.1. ECOLOGICAL DYNAMICS

The population densities of the species i"1,

2,S evolve through a system of di!erential
equations,

dN
i

dt
"!a

i
N

i
(t)!b

i
N2

i
(t)#+

j

g
ij
(MN

k
N)N

i
(t),

(3)

which determine the growth rate of the biomasses
as a function of the abundances of all other spe-
cies in the ecosystem. Species with biomass less
than a pre-de"ned threshold value N

c
become

extinct and are eliminated from the system. This
mimics the e!ect of demographic stochasticity
and the fact that species are made of discrete
entities.

The "rst term on the r.h.s. of eqn (3) stands for
the dissipation of energy following the biological
activity of the members of species i (movement,
extraction of nutrients, basal metabolism), as well
as the death rate of individuals. The coe$cient
a
i
corresponds to the quantities d and p

d
of the

IBM. The term !b
i
N2

i
(t) is known as self-

damping. It expresses a negative feedback of
N

i
on its own growth rate, which in some instan-

ces is required for stability. The terms g
ij
(MN

k
N)

are the predator functional response (PFR) to prey
j, and represent the biomass transferred per unit
time from species j to species i if the sign is
positive, and from species i to species j if it is
negative. They model prey}predator interactions
and correspond to the matrix C(m

i
, m

j
) in the

IBM.
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Energy #ows into the system through the
coupling of basal species to external resources,
which are formally represented as an additional
&&species'' N

0
whose equation will be speci"ed

below. Terms of the form g
i0

are thus equivalent
to the parameter B in the IBM. However
modeled, external resources introduce in the
system an energy scale R which limits its total
biomass.

We studied two di!erent variants of the
continuous model, with di!erent functional re-
sponses and di!erent equations for the resources.

f Model A: Prey-dependent functional response
and biotic resources.

The predator's functional response belongs
to the category of prey-dependent functional
responses, and is proportional to prey's bi-
omass, g

ij
(MN

k
N)"c

ij
N

j
. The coe$cients

c
ij

take values in the interval c
ij
3[0, c

max
].

In order to represent competition among ba-
sal species, we introduce a "ctitious dynamics
for the resources N

0
(t) (thus biotic resources),

modeling them through an equation of the
same kind as eqn (3),

1
N

0

dN
0

dt
"c

0
R#+

j

c
0j

N
j
. (4)

The constants c
0j

have all negative signs and we
assume that at least one basal species is present.

In Lotka}Volterra equations with prey-
dependent functional response, the quantity
a/c

max
introduces an energy scale in the ecosys-

tem, besides the other energy scales R, N
c
and

a/b. One can expect di!erent regimes for di!er-
ent relative values of these energy scales, and
this is indeed what we observe. Not all these
regimes are biologically meaningful. For in-
stance, for small values of the dimensionless
parameter u"c

max
N

c
/a dissipation e!ects

dominate and only basal species can survive in
the long run. This garden regime is brie#y de-
scribed in Appendix A.

f Model B: Ratio-dependent functional response
and abiotic resources.

The additional energy scale introduced in
Model (A) through the parameters a/c

max
is

not present in ratio-dependent PFR (Arditi &
Ginzburg, 1989). In this case, the PFR g
ij

de-
pends on the ratio between the prey biomass
and the predator biomass. When the prey j has
a unique predator i the functional response is
given by

g
ij
(MN

k
N)"

bcN
j

bN
j
#cN

i

. (5)

In the case of several predators for the prey j,
di!erent generalizations of eqn (5) have been
proposed (Arditi & Michalski, 1995; Schreiber
& Gutierrez, 1998; Drossel et al., 2000). We
adopt our own PFR, which reads

g
ij
(N

k
)"

b
j
c
ij
N

j
b
j
N

j
#+

k|P(j)
c
kj

N
k

, (6)

and where i is the predator and j the prey; b
j
is

a rate coe$cient, and c
ij

stands for the rate at
which a single individual of species i, in the
absence of competition, consumes a corre-
sponding quantity of biomass from species j.
The sum is performed over the set P( j ) of
predators of j, among which i is included.

The above equations, unlike model (A), ex-
plicitly represent the competition among pred-
ators of the same prey. It is then possible to
model external resources as a constant #ux of
energy available to basal species,

N
0
(t),R. (7)

Ratio dependent and prey dependent func-
tional responses have been supported and
criticized in several papers [see Abrams &
Ginzburg (2000) for a recent review]. We do
not want to enter into such a debate here. Any
functional response is just a crude representation
of a much more complicated situation, in which
spatial distributions of individuals, foraging
strategies and mating behavior are involved. The
point raised in this paper is that, although model
(A) and model (B) may have di!erent scaling
properties, the scaling behavior of biodiversity is
robust with respect to changes in the functional
response, in an appropriate range of parameters.
Indeed, we observe that model (B) gives results
qualitatively similar to those of model (A) for
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intermediate values of u"c
max

N
c
/a. In this

range, and for both models, S scales as log (R/N
c
).

3.2. IMMIGRATION AND ECOLOGICAL PARAMETERS

At time t"0 no species is present on the
island. New species arrive one after another, at
"xed intervals of time, 1/I. Between successive
arrivals, population dynamics equations are
integrated and species may die out.

For every new species, the ecological para-
meters are chosen at random and kept "xed until
the species become extinct. This means that new
species are not related to species already on the
island, that is, the continental pool is considered
in"nite with respect to the number of species on
the island. Additionally, this allows to disen-
tangle "nite size e!ects due to a limited number
of species in the pool from the role played solely
by the immigration rate.

New species have no predators on the island
and a number l of preys is randomly extracted
between one and l

max
(in most simulations we

used either l
max

"4 or l
max

"8). The l preys are
extracted with uniform probability among the
S(t) existing species, regarding the external re-
sources N

0
as a normal prey. This operation

de"nes the ecological network. Here, the speci"c
composition of the bare immigration #ux
changes in time (this does not happen in the
IBM), since the probability that the new species is
a basal species (linked to the resources) decreases
with an increasing number of species on the
island. In the stationary state, it becomes
constant on the average. As we will see, the
statistical properties of the ecosystem are robust
with respect to these changes in the immigration
rules.

For every link, the interaction strengths c
ij

are
extracted from a uniform distribution in [0, c

max
]

in the case of model (A). In the case of model (B),
the parameters c

ij
are extracted uniformly in

[0, c
max

], and b
j
,1. In both cases, i is the pred-

ator and j is the prey, and we then make the
assumption that the interaction strengths are
antisymmetric: g

ji
"!g

ij
. We also studied the

case of reduced e$ciency, c
ij
"!gc

ji
, with

i predator, j prey and 0.5(g(1, without ob-
serving any qualitative di!erence. In case of
model (A), the parameter c

0
, proportional to the
growth rate of the resources N
0
, is set to

c
0
"c

max
. As a simpli"cation, the dissipation

parameters are the same for all species
a
i
"a, b

i
"b.

Colonizing species arrive with very small
populations N

max
"N

c
. This assures that they are

rapidly eliminated if they do not have preys on
the island. Increasing the initial size increases
spurious e!ects due to species with very short
permanence in the system, and has only a very
small in#uence on the statistical patterns
described later.

3.3. DISCUSSION OF THE MODELING CHOICES

The choice that new species have preys but not
predators on the island has to be justi"ed. From
a practical point of view, this rule forbids the
formation of ecological loops. Moreover, new-
comers now have considerable chances of surviv-
ing. Note that in the IBM, and since new species
might not "nd an available feeding source, the
rate of arrival of species with non-vanishing per-
manence time presents #uctuations larger than in
this case, hence increasing the #uctuations of all
ecological variables. With the rule now imple-
mented, the resulting ecological networks very
much resemble those obtained with the applica-
tion of the cascade algorithm (used in the IBM
model). Despite these di!erences in the modeling
of immigration, the statistical behavior of the
system is not strongly dependent on the di!erent
choices: "nite pool with random interactions or
cascade model (IBM) or in"nite pool with cas-
cade model (continuous models). The di!erent
descriptions adopted amount to a simple rescal-
ing of the immigration rate I. For example, relax-
ing the rule that a new species only has preys on
the island would decrease its chances of being
accepted. A similar acceptance rate would never-
theless be obtained for a larger value of I.

Our simulations considered several representa-
tions of the ecological dynamics at the individual
and at the population level. Although our consis-
tent results let us believe that the models capture
generic properties of ecological networks, there
are a number of alternative (and equally plaus-
ible) dynamical rules or generalizations of our
rules that would be interesting to consider. We
shortly discuss some of them.
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First, "xing the ecological quantities a
i

and
b
i
equal for all species is quite unbiological. On

the other hand, extracting random values of
a
i
and b

i
for each species would lead the average

value of these parameters to decrease towards
zero, due to the advantage conferred by small
dissipation rates and self-damping. In order to
avoid this e!ect, we believe that it is necessary to
model a trade-o! between dissipation, a

i
, and

predation e$ciency (c
ij

or c
ij
), in such a way that

the latter is an increasing function of the former.
Another critical point is that all pairs of coe$-
cients g

ij
and g

ji
have, in our model, opposite

signs, so that symbiotic relationships are not
represented.

Regarding the network structure, it is certainly
a signi"cant simpli"cation to build links indepen-
dent of each other. For a more realistic model,
one needs a measure of the distance among spe-
cies in some multidimensional space. It would
then be possible, for instance, to extract at ran-
dom the "rst prey of a new species, and then to
extract the remaining preys with a probability
depending on the distance from the "rst prey.
Regarding the topology of the network of inter-
actions, it is comforting that ecological networks
constructed using both the cascade model and
random matrices containing loops (in two di!er-
ent dynamical frameworks) returned the same
qualitative behavior.

For a very long time, co-evolution of species
would become relevant. This might be taken into
account by making appropriate modi"cations
in the ecological network or in the interaction
parameters. Discarding coevolution is justi"ed if
the time scale of the simulation is much shorter
than the time after which at least one species
in the ecosystem mutates. Nevertheless, the latter
time scale is expected to decrease as the number
S(t) of species in the ecosystem increases, until
a point where it is not possible anymore to
neglect coevolution. Such a situation is worth
considering and will be the subject of future
work.

4. Statistical Features of the Stationary State

For every set of observations, we present both
results obtained with the continuous model and
the IBM, whenever available. In fact, the two
descriptions produce the same qualitative behav-
ior, even if simulations are much faster for the
continuous model, so that it is possible to simu-
late larger systems and to obtain better statistics.

When we extract at random an ecological net-
work with a high number of species (up to 1000)
and a low number of links per species (for in-
stance four), the ecological dynamics leads to the
extinction of most of the species, until only very
few are represented in the system. This result does
not seem to depend on the way in which the links
have been extracted (either using random ma-
trices or through the cascade model), on the
parameter values, or on the kind of ecological
dynamics represented (individual based or con-
tinuous, with prey dependent or ratio dependent
PFR).

In the presence of a constant #ux of immigrant
species, the ecosystem, initially empty, grows very
fast in diversity until it reaches a number of
species which remains on the average stationary
in time, although characterized by relatively large
#uctuations. This process is illustrated in Fig. 1.
The system di!ers signi"cantly from a static net-
work: In fact, if we stop immigrations we notice
an abrupt decrease in the number of species until
a "xed point of much lower diversity is reached
(see Fig. 1).

Choosing as time unity the quantity 1/a and as
biomass unity the external resources R, the dy-
namical equations can be written in terms of four
dimensionless parameters. For model (A) they
are:

c@
max

"c
max

R/a , N@
c
"N

c
/R ,

b@"bR/a , I@"I/a , (8)

while for model (B) the "rst parameter is sub-
stituted by

c@
max

"c
max

/a . (9)

Together with the maximal number of preys for
a colonizing species l

max
these parameters deter-

mine the model ecosystem. An overview of the
parameters characterizing models (A) and (B) is
presented in Tables 2 and 3.

We observe a turnover of species in the system,
and even a complete change in the species



FIG. 1. Number of species as a function of time in two
typical realizations of the continuous model. The upper
curve was obtained with eqn (3) using the following
parameters: N@

c
"10~3, b@"104, c@

max
"5000, l

max
"8,

1/I@"7]10~4. The lower curve was obtained with model
(B) and parameters N@

c
"10~4, b@"10, c@

max
"20, l

max
"8,

1/I@"7]10~3 (see Tables 2 and 3). In both cases, only the
"nal part of the evolution is shown. After a fast transient
(t(1000), the system reaches a dynamical equilibrium state.
The steep decrease of biodiversity corresponds to stopping
the immigration rate. This last part and the initial transient
part of the curves were not used to measure stationary
quantities.

TABLE 2
Parameters common to the continuous models (A)

and (B)

a Dissipation of energy and death rate
b Self-damping
g
ij
(MN

k
N) Predator functional response

N
c

Extinction threshold
R Abiotic resources
I Net immigration rate
l
max

Maximum number of prey for immigrant
species

N
ini

Initial population of an immigrant species

Dimensionless parameters
b@"bR/N

c
N@

c
"R/N

c
I@"I/a

TABLE 3
Parameters characteristic of each continuous

model

Model A: Prey dependent PFR and biotic resources

c
ij
3[0, c

max
] Interspeci"c interaction

c
0
"c

max
Biotic resources growth rate

Dimensionless parameter: c@
max

"c
max

R/a

Model B: Ratio dependent PFR and abiotic resources

c
ij
3[0, c

max
] Consumption rate of j by i

b
j
,1 Rate coe$cient

Dimensionless parameter: c@
max

"c@
max

/a
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composition of the island in the course of time. In
the IBM model, where we use a "xed continental
pool of species, the presence of di!erent basal
species determines the intermediate and top spe-
cies allowed by the subnetwork on the island.
Due to stochastic e!ects, we observe a turnover
of basal species (often after a long time interval),
and consequently a complete renewal of the is-
land ecosystem (see Fig. 2). This picture agrees
qualitatively with experiments on island re-
population (Simberlo! & Wilson, 1969; Heat-
wole & Levins, 1972; Simberlo!, 1969), where,
after defaunation, a di!erent speci"c composition
was obtained.

4.1. SPECIES DIVERSITY AND RELATION

AMONG TIME SCALES

When the stationary state is reached, we
observe that, for some range of parameters,
the average number of species S increases
as a power law of the immigration rate I,

S+S
0
#cIa, (10)

with a constant S
0

usually very small (its value is
particularly sensitive to the parameter b ). Note
that if I would be strictly zero, then our system
would be empty. But in the limit of arbitrarily
small (yet positive) values of I a "nite number of
species (S

0
) can persist in the island, as long as

their characteristic permanence time is larger
than 1/I. This limit corresponds to the "xed point
of the dynamical equations for the network.

We de"ne a new exponent b, that we call com-
petition exponent, as

b"
1
a
!1. (11)



FIG. 2. Two di!erent ecological subnetworks for the IBM model observed on the island for the same network in the
continent. The speci"c composition might be di!erent at di!erent time moments as a result of the turnover of species and of
the alternating dominance of di!erent basal species. Here we show the result of a simulation of a small &&continent''with a total
number of 15 species. Within an interval of 3000 time steps, the two con"gurations represented by "lled symbols (for species
actually present on the island), were observed. Circles stand for top species, squares for intermediate, and rectangles for basal
ones.

FIG. 3. Average number of species at stationarity in the
IBM model as a function of the immigration rate I

0
. Three

di!erent regimes are observed as I
0

is increased. The para-
meters for each of the curves are: N

h
"104, M

h
"100,

M
a
"900, E"100, E

rep
"200, l"3, b"5, d"2, d"20,

p
d
"0.002 (m*m); empty squares correspond to the same

parameters with d"1, and solid circles to the same situ-
ation but E"150, b"10, and d"1. These three curves
have been obtained from random interaction matrices (RM).
The solid line corresponds to a simulation of the CM with
parameters as in the last case.
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In the stationary state, the average extinction rate
per species is e"I/S and increases with the num-
ber of species at equilibrium as Sb (for S<S

0
),

whence the name of competition exponent,

eJSb. (12)

Since the exponent b is larger than zero, the larger
the number of species, the smaller the time scale
for the extinction of a single species. The fact that
the extinction rate increases with the number of
species has been postulated in the theory of island
biogeography. However, we "nd this result not as
a phenomenological law, but as a generic feature
of the dynamics of randomly assembled networks
subject to ecological dynamics. We "rst present
results from the IBM and then compare them
with those from the continuous models, eqn (3).

The results of the IBM model are summarized
in Fig. 3. Four curves displaying the average
number of species S as a function of the immigra-
tion rate I are plotted. Curves qualitatively sim-
ilar to ours were obtained in other simple models
for island colonization (Rosenzweig, 1995;
Loreau & Mouquet, 1999), but the functional
relationship between I and S was not investi-
gated.

All curves in Fig. 3 show two plateaus corre-
sponding to a (i) low diversity regime (small
immigration rate), and (ii) disordered species
composition (large immigration rate), which are
linked by a transition region with power-law
shape described by eqn (10). The e!ective
exponent obtained from a power-law "t is
aK0.75. This intermediate regime is the most
interesting one, since here both the immigration
rate and the ecological organization play a
relevant role in setting the average number of



FIG. 4. Sample of plots of the stationary number of spe-
cies as a function of the inverse of the immigration rate, in
units of 1/a. Filled symbols refer to simulations of model (A),
empty symbols are for model (B). Parameters are as follows.
Filled diamonds: N@

c
"10~3, b@"103, c@

max
"5]103 (in this

case the horizontal axis is 10a/I). Empty circles: N@
c
"10~5,

b@"102, c@
max

"20. Empty diamonds: N@
c
"10~4, a"0,

c
max

/bR"20 (in this case the horizontal axis is 1/(bI)R).
Empty squares: N@

c
"3.125]10~7, b@"32, c@

max
"2. Empty

triangles: N@
c
"10~5, b@"2, c@

max
"8. l

maax
is either four or

eight. In all cases, N
ini
"4N

c
.
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species at equilibrium. In the lower plateau, the
dynamics is dominated by the internal ecological
processes, while in the higher plateau the fast
arrival of new individuals controls the species
composition on the island. This latter situation is
analogous to the one observed in the defaunation
experiment reported in Simberlo! & Wilson
(1969) and Simberlo! (1969). The value of
S reached in the higher plateau mainly re#ects the
size of the "nite pool. If MPR (provided N

h
and

B are large enough), it moves towards increas-
ingly larger values of S, and the scaling beha-
vior holds in a broader range of I.

The results for the continuous model are com-
pletely similar. The regime between the two pla-
teaus is represented in Fig. 4. Notice that in this
case we do not have a "xed continental pool, or,
in other words, the parameter M has to be inter-
preted as in"nite. Some of the curves show a cur-
vature in log}log plots, which can be eliminated
introducing S

0
as additional "t parameter and

plotting (S!S
0
) vs. I. The e!ect of S

0
is thus to

reduce the e!ective exponent a as the immigra-
tion #ux is reduced.
The observed exponents range from a"0.42
to 1. Interestingly, the case with a"1, corre-
sponding to a competition exponent b"0
(not represented in Fig. 4), refers to a case where
basal species were not in competition, since we
used Model (A) with constant resources,
N

0
(t),R. In all other cases, the exponent b was

positive.
We now discuss the behavior of biodiversity

with the parameters of the ecological equations.
Keeping the other dimensionless parameters
given in eqns (8) and (9) "xed, biodiversity in-
creases logarithmically with the resources R/N

c
,

S+A
1
#A

2
log(R/N

c
). (13)

This result holds for the IBM and for the con-
tinuous models, but for model (A) it is only valid
in some range of parameter values. In fact, for
"xed c@

max
and N@

c
that is small enough, model (A)

is found in the garden regime, where only basal
species survive, and the scaling behavior is di!er-
ent there (see Appendix A). The exponent a, de-
"ned in eqn (10), changes only very weakly with
R/N

c
.

Biodiversity also increases with the maximal
transfer rate, either c@

max
for Model (A) or c@

max
for

Model (B), when all other parameters in eqn (8)
are kept constant. In the "rst case, at small
c@
max

N@
c
we again reach the garden regime, where

the number of species is almost independent of I.
In the second case, the number of species tends to
zero as c@

max
approaches unity (for N

ini
"N

c
).

Both limits can be interpreted as corresponding
to a"0, thus b"R. The exponent a then in-
creases slowly with c

max
.

The e!ect of the parameter b@, when other
parameters in eqns (8) and (9) are "xed, depends
on the immigration rate. While biodiversity in-
creases for increasing b@ at small immigration, the
opposite happens if immigration is large. Thus,
I}S curves relative to di!erent values of b@ should
cross at some point. This behavior re#ects the
fact that the exponent a decreases with increasing
b@, while S

0
increases. As in the case of c@

max
, the

decrease of a can be explained by the fact that, at
larger b@, the probability that a colonizer has
a positive growth rate becomes smaller. The pos-
itive e!ect on S

0
, on the other hand, is due to the

fact that the larger the b@, the more likely it is that



FIG. 5. (a) Ratio between the variance and the mean of the distribution of the number of species. (b) Comparison of four
stationary P(s) (solid lines**) with Poissonian distributions with the same average value (dashed lines } } }). From left to
right resources and immigration rates increase, other parameters are "xed. Model (B) has been used.
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two predators feeding on the same prey species
can coexist.

We also measured the stationary distribution
P(s) of the number of species s. We plot in Fig. 5
a the ratio between the variance<

s
"Ss2T!SsT2

and the mean S"SsT as a function of the mean
number of species S. The measure is much noisier
than that of the average value and is strongly
a!ected by possible sampling errors. The vari-
ance is typically lower than the mean for small
SsT, but at some point increases faster than the
mean, becoming larger than it at large SsT. Since
for a Poissonian distribution the variance and the
mean are equal, the distribution P(s) is narrower
than a Poissonian for small SsT, and broader for
large SsT (see Fig. 5b, where for each curve
a Poissonian distribution with the same mean
value has been represented as a dashed line).
Notice, however, that the comparison with
a Poissonian distribution is very good for some
range of parameters.

4.2. SPECIES AREA RELATIONSHIP

In order to investigate te dependence between
biodiversity and area, we have to "x the relation-
ship between area and immigration rate I. Usu-
ally, a positive correlation is expected even
though the actual dependence may vary with the
species considered. We restrict our study to the
assumption that the immigration rate is propor-
tional to the typical cross-section of the island
(MacArthur & Wilson, 1963), that is, to the
square root of the total area,

I"I
ct
#kA1@2. (14)

We also include a constant I
ct

to take into
account the fact that, for islands in an archi-
pelago, the immigration rate depends much more
on the geometry of the archipelago and on its
distance from the mainland than on the value of
the area. For isolated islands and whole archipel-
agos, on the other hand, there is usually a unique
source of immigrants from the mainland, and the
e!ect of area on immigration is expected to be
important. In view of this situation, in the "rst
part of the discussion the constant I

ct
will be

neglected. The parameter k is related to the dis-
tance from the mainland.

In the framework of the IBM, the other para-
meter in#uenced by area is the number of patches
N

h
, which is taken to be proportional to area:

N
h
"A, with an appropriate choice of units.

Thus, we simulated systems with di!erent values
of N

h
, varying the immigration rate as above.

Our main result is that we always obtain
a power-law dependence of the number of species
with the area, with typical values of z in the
interval 0.6}0.8, as it is observed for the case of



FIG. 6. Average number of species as a function of area in
the IBM model, for an immigration rate proportional to the
square root of A. The three curves correspond to di!erent
sizes of the species pool M, as shown in the legend. The
remaining parameters are equal for the three curves and are
E"150, E

rep
"200, d"1, d"20, p

d
"0.002. The straight

line has z\0.75. These results are obtained with the cascade
model. Similar curves are obtained for a random matrix,
with values of S slightly below these, on the average. ( j )
M"1000, B"10; ( s ) M"1000, B"5; ( r ) M"300,
B"10; (¢) M"1000, B"10.
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archipelagos, to which our immigration model
should apply. Taking into account additional
sources of immigrations, like closeby islands, is
expected to reduce the dependence of the immi-
gration rate on area, and thus to cause a decrease
in the e!ective z values, making them more
similar to the values observed in groups of neigh-
boring islands.

For the IBM, we represent in Fig. 6 the num-
ber of species as a function of area, with immigra-
tion rate I,kJA and N

h
,A, for di!erent

values of the continental pool M. It can be seen
that the species}area relationship bends for large
areas, apparently tending to an asymptote. In-
creasing the species pool M increases the asymp-
tote, but leaves the value of the e!ective exponent
unchanged.

We now come to the species}area relationship
in the continuous formulation of the ecological
dynamics. We should "rst discuss how the para-
meters of the ecological equations, eqns (8) and
(9), depend on area. The variables N

i
of ecological

equations have the meaning of spatial densities of
individuals. Thus the equations are invariant
with respect to changes of area. There is however
another important determinant of the ecological
dynamics: The threshold N

c
below which extinc-

tions happen. Two di!erent cases have to be
considered:

1. N
c

independent of area: there is a critical
density below which the species go extinct, as for
Allee's e!ect (Allee et al., 1949). Such a situation is
expected, for instance, if the individual of the
species is uniformly dispersed in the area A so
that, below the critical density N

c
, they cannot

"nd mating partners.
In this case, the ecological dynamics is invari-

ant under changes of the area and, in particular,
the extinction rate does not depend on A. Assum-
ing that the immigration rate increases with area
as in eqn (14), and that the area is much larger
than (I

0
/k)2, we "nd

SJAz , z"a/2, (15)

where a is the exponent in eqn (10).
2. Extinctions depend on the absolute number

of individuals A]N
i
, wherein the extinction thre-

shold is

N
c
J1/A. (16)

(a) First, we consider this case together with
I"I

ct
independent of area [corresponding to

k"0 in eqn (14)]. From eqn (13), we obtain
then that the number of species increases log-
arithmically with area:

SKA
1
#A

2
log(A). (17)

This relation is indeed observed for birds in
the central islands of the Solomon archipel-
ago, which are all very close to one another
(Diamond & Mayr, 1976). For such islands,
the immigration rate can be expected to be
rather independent of area and the logarith-
mic SAR is found.

(b) The immigration rate increases with island
size (A<(I

0
/k)2 ),

I"kA1@2. (18)

In this case, we cannot rely on previous re-
sults, and we have to perform new simula-
tions, scaling the parameter I as in eqn (18).



FIG. 7. Number of species as a function of area, in the hypothesis N
c
J1/A, I"kA1@2. (a) Curves for di!erent values of k,

with l
max

"4. (s*s) A1@2/I@"0.5; (h*h) A1@2/I@"0.1; (e*e) A1@2/I@"0.02; (b) A curve for k"0.02 compared to biodiversity
data of Paci"c archipelagos (Adler, 1992; Rosenzweig, 1995). Here, l

max
"8. Results are for Model (B). (s*s) Model; (#).

Tropical archipelagos.
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We note that, in both cases 2(a) and 2(b) model
(A) can become problematic at large area. In fact,
as area increases the coupling constant c

max
N

c
/a,

which is inversely proportional to the area,
becomes smaller, and the system will be domi-
nated by dissipative e!ects if the biomass of
the species is of order N

c
(see Appendix A).

The result is that, unless a"0, eqn (29) would
not be satis"ed as area increases, and the system
would again "nish in the garden regime. It is
not surprising that Lotka}Volterra equations
are in trouble for very low densities: in fact, they
are analogous to equations of chemical kinetics,
and when the density of the species that is in-
volved becomes too small, the assumptions on
which they are founded break down. To avoid
such a problem, we used the ratio dependent
model (B) together with eqn (18). Nonetheless,
our numerical study shows that model (A) also
provides comparable results in a suitable range of
parameters.

Results are plotted in Fig. 7, and yield an
approximately power law species area relation-
ship for large enough values of the parameter ak.
In the log}log plot, the curves S (A) show a nega-
tive curvature which can be eliminated through
the introduction of an extra parameter A

0
in

the "t,

SKc (k) (A!A
0
(k))z(k). (19)
Both the e!ective exponent z(k) and the limit area
A

0
(k) increase slowly with the immigration para-

meter k. For the curves in Fig. 7, the exponent
z(k) ranges from z"0.49 at k"2 to z"0.56 at
k"50.

We notice however that the scaling form eqn
(19) is only approximate, that a scaling of the
form Az log(A) would probably be more ad-
equate, and that the immigration rate is a better
scaling variable than area. But since real data are
mainly obtained for the SAR, and "eld informa-
tion about immigration rates is largely lacking,
we extract a functional relation between S and R
for the sake of comparison with real ecosystems.

Our model of immigrations applies to whole
archipelagos or to isolated islands because we
consider a single source of immigrants. It is re-
markable that the exponent z observed for a set
of Paci"c archipelagos has the value z"0.54
(Adler, 1992; Rosenzweig, 1995), in very good
agreement with the results of our simulations
when I scales as the square root of the area A.
Real data are shown for comparison in Fig. 7b.
When I is a constant independent of area, we
obtain a logarithmic SAR, again in agreement
with observation where, due to the geography,
the hypothesis of a constant I is reasonable
(Diamond & Mayr, 1976).

It is striking that models at di!erent descrip-
tion levels, as the IBM and the continuous model
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(B), yield very similar species}area relationships.
We compared other statistical features of the
individual based and the continuous models, and
found that they are qualitatively very similar (this
holds for the Lotka}Volterra model as long as
the garden regime and the opposite low dissipa-
tion regime are avoided). In the following, we will
present a complete analysis of the stationary state
for data obtained from the IBM and from the
continuous model (B).

4.3. DISTRIBUTION OF SPECIES ABUNDANCES

We measured distributions of species abund-
ances, de"ned as the probability density p(N) of
species with N individuals (or total biomass equal
to N in the case of the continuous model), both
for the IBM and for the continuous model. We
observe a good qualitative agreement of the
results in both approaches.

In the framework of the IBM, we measured the
distribution of species abundances for three
values of the immigration rate corresponding to
the three regimes in Fig. 3 (slow, intermediate and
fast driving). Fig. 8 represents the frequency p (N)
with which species formed by N individuals were
recorded. All curves show an initial fast decaying
part corresponding to species that go extinct
FIG. 8. Distribution of the number of individuals per
species in the IBM model for di!erent values of the immigra-
tion rate. The remaining values are as in Fig. 3. As can be
seen, the abundances of species are power-law distributed
with an exponent close to unity in all cases. The increase in
the immigration rate moves the exponential cut-o! at large
sizes towards the right. (d*d) I

0
"1/32; (s*s) I

0
"1; (r*r)

I
0
"32.
almost immediately after arriving at the island.
Since these species do not "nd prey to feed on,
their initial energy decays exponentially and they
die out of starvation. The relevant part of these
distributions results from species which play
a role in the ecological network. This part shows
a power-law decay of the form

p(N)JN~m, (20)

with mK1. Finally, the external resources set the
value of N at which an exponential cut-o! ap-
pears. Our results are in good agreement with
"eld measures of diversity, many of which also
return a power-law distribution of species abund-
ances with an exponent in the range 1}1.25
(Pielou, 1969; SoleH et al., 2000).

The same results are obtained in the frame-
work of the continuous model. In this case, how-
ever, we observe that the exponent m increases
slowly with immigration rate, tending to m+1 in
the limit IP0. The maximum value that we
found in our simulations is m+1.25, still compat-
ible with observational data. A sample of results
is reported in Fig. 9a. In Fig. 9b the decrease of
the exponent m with the immigration rate is
shown.

4.4. LIFETIME DISTRIBUTION

The distribution of lifetimes of species is shown
in Fig. 10 in a log}log plot, for several values of
the immigration rate and of other parameters.
After an initial part where the distribution is
almost uniform, corresponding to species with
very short permanence time, we observe an
approximate power-law decay of the probabi-
lity density for a range of at least one and half
decade

p(q)+q~g, (21)

when using di!erent parameter values, we found
values of the e!ective exponent g between 2.1
and 2.8.

The average lifetime SqT in the equilibrium
state is related to biodiversity through the rela-
tion

SqT"SST/IJI~b@(1`b), (22)



FIG. 9. (a) Distribution of the biomass per species in the continuous model (B), for di!erent values of the immigration rate.
(**) I@"2; ( ) ) ) ) ) ) I@"0; ( } } } ) I@"35; (} ) } )) I@"125. (b) The exponent m of the power-law part of the distribution minus
one as a function of the immigration rate. Parameters: N@

c
"10~5, b@"1, c@

max
"2, l

max
"4.

FIG. 10. (a) Lifetimes distribution in model (B) for di!erent values of the immigration rate. Other parameters: N@
c
"10~5,

b@"1, c@
max

"2, l
max

"4. (s*s) I@"2; (j*j) I@"8; (e*e) I@"35; (m}*m) I@"125. (b) The exponent g for the power-law part
of the distribution as a function of the immigration rate. Other parameters as in (a).
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which follows from its de"nition and from the
condition of stationarity. The average lifetime
decreases with the immigration rate I and, con-
sistently, the value of the exponent increases, as it
is shown in Fig. 10b.

Our results compare qualitatively well with
measured patterns (Keitt & Marquet, 1996; Keitt
& Stanley, 1998). It was in fact observed that
the time of permanence of birds in local patches
follow a distribution approximately of the form
(21) with e!ective exponent g"1.6, indeed
smaller than the typical values found in our
simulations. A result which compares better to
this last value has been found, using a model
without explicit ecological dynamics, in SoleH et al.
(2000).

4.5. NETWORK ORGANIZATION

The structure of the ecological network
changes, even if very slowly, with changing immi-
gration rate. We have examined in particular the



FIG. 11. (a) Frequency of species at trophic level l in the entire course of the simulation for model (B) and di!erent values of
the immigration rates. Food chains become longer at increasing immigration rate. (s*s) I@"2; (j*j) I@"7; (***) I@"15;
(m}*m) I@"30; (e*e) I@"45. (b) Similar, for di!erent values of the resources. (s*s) R/N

c
"106; (j*j) R/N

c
"105; (m*m)

R/N
c
"104; (r*r) R/N

c
"10;
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number of trophic levels, the number of links per
species and the total biomass.

We de"ne the trophic level of a species as the
minimal path (number of links) connecting it to
resources. In all our simulations the number of
trophic levels varies between four and ten. It
shows a tendency to increase with immigration
rate, as it is illustrated in Fig. 11.

The average number of links per species,
counted as average number of preys, is shown in
Fig. 12 as a function of the immigration rate. It
changes very slowly (logarithmically) and, in
some cases, in a non-monotonic way (for most
curves we only observe either the increasing or
the decreasing part). A similar pattern is observed
as a function of the resources R (see Fig. 12b).
Thus, as a function of the number of species, the
number of links per species behaves non-
monotonically. It also depends weakly on the
maximum number of links allowed when the new
species is added to the ecosystem, l

max
. The total

biomass also increases approximately as a power
law of the immigration rate, as shown in Fig. 13.
The exponent ranges from 0.15 to 0.58.

5. Relationship to MacArthur & Wilson:s Theory

We have already seen in the previous section
that quantitative biodiversity patterns can be de-
rived from a balance between external driving
(immigrations) and the intrinsic population dy-
namics of the ecosystem. Here, we would like to
relate these results to the existing phenom-
enological approaches, in particular MacArthur
& Wilson's (1963, 1967) theory of island biogeog-
raphy.

In an ensemble average (or, equivalently, in an
average over long times), the response of the
system to a constant immigration #ux I trans-
lates into a stationary extinction rate E. This can
be expressed as a function of the average number
of species S in the system, E"E(S). Of course,
this function depends also on the model para-
meters and on qualitative features of the immi-
gration #ux. Since the system is at a stationary
state, immigration and extinction balance on the
average,

I!E(S)"0, (23)

as postulated by MacArthur & Wilson. The net
immigration #ux here measures the average num-
ber of new accepted species per unit of time. The
functional form of the extinction curve E(S) can
now be obtained from the underlying population
dynamics. As explained above, we "nd

E(S)"E
0
S1`b, (24)



FIG. 12. (a) Number of links per species as a function of the immigration rate for model (B). Empty symbols refer to
l
max

"8, "lled symbols to l
max

"4. (b) Same as a function of the resources R.

FIG. 13. Biomass as a function of the inverse of the immi-
gration rate in the continuous model (B).
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in the scaling regime where the number of species
increases as a power law of the immigration rate.
The competition exponent b has been introduced
in eqns (11) and (12). In fact, from the stationary
solution of eqn (23), we recover eqn. (10),

S"A
I

E
0
B
1@1`b

. (25)

This equation allows to derive the exponent z
of the species}area relationship. We can now
assume an arbitrary scaling of the immigration
rate and the factor E

0
with the area,

IJAs, E
0
JA~e, (26)

in order to obtain a general SAR and a relation
among all the scaling exponents involved,

SJAz with z"
s#e
1#b

. (27)

For the population models, we assumed s"1/2
(the immigration rate is considered proportional
to the linear size of the island), and we obtained
e"0 (in fact, the number of species increases
as does the logarithm of R/N

c
at "xed I, both

in the IBM and in the continuous model (B)).
The case of immigration #ux independent of
area constitutes a marginal situation in which
s"0, implying z"0 and a logarithmic depend-
ence (at most) of A with S.

We remark here that, as in the explicit popula-
tion models, we are assuming that the only
source of immigrants is a continent far apart. The
exponents that we "nd should then be compared
to the exponents observed for isolated islands or
archipelagos, while the exponent computed
among islands of the same archipelago is ex-
pected to be lower, due to a reduced dependence
of immigration rate on area. Another point to
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remark is that the net immigration rate
I measures the #ux of new species arriving at the
island. If this #ux is assumed to originate from
a continent of M species, I can be related to the
bare immigration #ux I

0
by correcting for the

immigrant species already present on the island.
The simplest ansatz is I (S)"I

0
(1!S/M)

(MacArthur & Wilson, 1963, 1967). Expressed in
terms of I, the average number of species
S reaches a saturation value of order M. If the
pool of immigrants is very large, M<S or in"-
nite, as assumed in the continuous model, this
correction is negligible.

6. Summary and Conclusions

We have presented a study of biodiversity in
insular ecosystems at the individual and the
population level. Our interest has been focused
on the statistical properties of the dynamical sta-
tionary state and on the scaling relations between
the system variables. Instead of describing de-
tailed situations in which some particular species
and their exact interactions with their known
preys and predators are included, we let ecologi-
cal networks self-organize through random as-
semblage of species, ecological dynamics, and
possible extinctions.

Our main result is that, in a broad range of
parameters, biodiversity scales approximately
as a power law of the immigration rate. The
value of the exponent varies slightly when
the parameters of the models are changed, but
the qualitative features of the stationary state are
quite robust.

The behavior of biodiversity with immigration
rate allows to derive a species}area relationship
with a power-law shape, if we assume that an
allometric relation between the area of the island
and immigration rate exists. If the immigration
#ux is independent of the area, we recover a
logarithmic SAR (Diamond & Mayr, 1976).
Such a model of immigration considers as unique
source of diversity a #ux of species from a
continent far apart. We have numerically ana-
lysed the case where the immigration #ux scales
as the square root of the total area of the island,
and compared our results to observations
in isolated islands or whole archipelagos. The
agreement is in this case rather good: the
observed value of the e!ective exponent z on
archipelagos is z"0.54 (Adler, 1992; Rosen-
zweig, 1995), while we typically get, with the
continuous model, values between 0.52 and 0.56
and, with the individual based model, values be-
tween 0.6 and 0.8. Thus, the comparison of our
two description levels points out to species}area
law of the type (1) as a generic feature of a broad
set of ecological models with random interac-
tions.

Our models qualitatively reproduce other fea-
tures observed in real ecosystems. We observe
a power law distribution of population abund-
ances, i.e. the number p (N) of species with N indi-
viduals approximately decreases as p (N)JN~m.
This is expected to be a general consequence of
the multiplicative nature of population dynamics
equations. The exponent m found in our simula-
tions is close to unity, in favorable comparison
with "eld data, and increases with the immigra-
tion rate.

We also observe a broad distribution of the
time of permanence of species in the system q, as
it has been observed in the "eld (Keitt & Mar-
quet, 1996; Keitt & Stanley, 1998) and in a related
model (SoleH et al., 2000). The average permanence
time is proportional to the number of species and
inversely proportional to the immigration rate,
SqT"SST/I, so that it decreases with the immi-
gration rate. The fact that it is observed, both in
"eld studies and in models, that its distribution is
broad, could help to reconcile the apparent
dichotomy between fugitive and permanent
species (Schoener & Spiller, 1987): These two
groups could correspond to the two extreme
cases of a unique distribution of permanence
times. The approximate power-law shape of
the distribution of times of permanence on the
island is reminiscent of the analogous distri-
bution of the lifetime of genera in the fossil
record, which is approximately given by
P(q)Jq~g, with g+2, close to what is observed
in our model for very small immigration rates
and also close to ecological observations. It is
tempting to speculate that this similarity points
out at similar mechanisms acting on the time
scales of ecosystem dynamics as on the time
scales of macroevolution.

The number of trophic levels in the food web is
also strongly in#uenced by the immigration rate.
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We typically "nd from four to ten trophic levels,
depending on parameters, and with a tendency
for the number of levels to increase with immi-
gration rate. Hints to the correlation between
immigration rate and the number of levels can
be found in the fact that the length of food
chains appears to be positively correlated to
habitat area, although the data are quite poor
(Schoener, 1989; Spencer, 1997). Our results
suggest that one of the factors limiting the length
of food chains is the immigration or speciation
rate. Notice that in our model no other limita-
tions to the length of food chains exist: energetic
considerations would limit the number of levels
to a value log(R/N

c
), much larger than the one

observed.
An important result of our study is that the

observed statistical patterns are rather robust
with respect to changes in the dynamical rules of
the model. One example is the representation of
space. Although one could think that explicit
space is in any case needed in order to recover
a satisfactory SAR, we included space only in an
e!ective way, suggesting that its e!ect is mainly
translated in an increase of the immigration rate
and the resources with the area. We believe that
this e!ective approach captures the main features
of the behavior of biodiversity with area, even if
important issues, like for instance the presence of
many di!erent habitats, are not represented in
the model.

As Pimm poses it, (2) it is pointless to try to
justify models1 equations biologically } their
assumptions are almost bound to be wrong. (2)
¹he concern should not be whether the assump-
tions are wrong (they are!), but whether it matters
that they are wrong. (Pimm, 1991). It seems
that the statistical laws and the scaling relation-
ships that we observed are generic properties
of complex ecosystems, that is the unavoidable
results of a minimal set of rules governing popu-
lation dynamics and immigrations. Thus,
the strategy is to look for the simplest set of
rules which appear sensible and which allow
to derive the observed statistical patterns of bi-
odiversity.

Discussions with David Alonso, Lloyd Demetrius,
Barbara Drossel, Lorenz Fahse and Martin Rost are
gratefully acknowledged.
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APPENDIX A

The Garden Regime

In the case of model (A) of continuous dynam-
ics, we observed that only basal species can
survive on the long run for a certain range of
parameter values. In this case, the stationary
state is reached over time scales much longer



FIG. 14. Evolution of the number of species in the garden
regime. Notice that, although the rate of increase gets
slower, the number of species does appear to reach any
stationary value. Model (A) has been used. Parameters:
cN

c
/a"0.1, b@"10, N@

c
"0.001, l

max
"4.

34 U. BASTOLLA E¹ A¸.
than the typical time scales of our simulations
(see Fig. 14).

We call such a state the garden regime, since
predators are absent. Its statistical properties are
peculiar: the distribution of biomasses is narrow
and peaked at very low values (N

i
KN

c
, ∀i), and

the distribution of lifetimes is bimodal, with
a high peak for very short lifetimes correspond-
ing to transient species, and a lower one for large
lifetimes, corresponding to semi-permanent spe-
cies. Finally, the distribution of the transfer rate
c
0i

from the external resources to species i is
strongly peaked close to the maximum allowed
value c

max
. All these features can be easily ration-

alized as follows.
Let us consider a situation where S basal spe-

cies coexist feeding on the abiotic resources N
0
.

Our calculations (unpublished) show that at the
static "xed point of the corresponding ecological
equations, [eqns (3) and (4)], all biomasses are
positive if and only if all di!erences in the coe$-
cients c

0i
are smaller than C/S, where C"

c
0
bR/a. Thus, as S increases, the coupling con-

stants between the basal species and the environ-
ment deviate from the initial distribution and
become more and more similar. Notice that, if
b"0, the coe$cients c

0i
's should be exactly

equal to guarantee coexistence (this expresses
in this context the &&principle of competitive
exclusion''). This conclusion does not vary quali-
tatively if one considers Model (B) instead of
Model (A). Thus, in a system without predators
and high immigration of basal species, we expect
to "nd many basal species with very similar bi-
omasses, all of the order R/S (S is necessarily
smaller than R/N

c
) and coe$cients c

0i
very near

in value.
Let us now consider the arrival of a predator

to such a system, considering "rst Lotka}
Volterra equations (model (A)). The growth
rate of the predator is bounded from above
by r
max

,

r
max

"l
max

c
max

R
S
!a!bN

c
. (A1)

Since R/S is larger than N
c
, we "nd that, for large

S, a non-basal species can colonize only if

c
max

*

1
l
max
A

a
N

c

#bB . (A2)

Every time we observed in our simulations eco-
systems mainly composed of basal species and
whose biodiversity has a time behavior similar to
that in Fig. 14, the above condition was not
ful"lled.

In model (B), r
max

"l
max

a@c
max

!a!bN
c
.

This quantity must be larger than zero, otherwise
no species would survive. Thus, the garden
regime that we described in this appendix can
always be invaded by predators in simulations of
ratio dependent PFR (unless we use di!erent
parameters for basal and predatory species).
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