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Abstract

We study some exact properties of supercritical branching processes. A proper rescaling of the relevant variable allows us to

determine the distribution of population sizes after a number of generations have elapsed. Both time-continuous and discrete

processes are analysed and compared. The obtained results are of relevance for the growth of populations that are not resource

limited (a typical situation in some biological processes that can be modelled by laboratory experiments). Large fluctuations inherent

to the process play a main role when bottlenecks occur.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The application of branching processes to the analysis
of biological, demographical and physical problems
started more than a century ago, with the pioneering
work of Galton and Watson (1874) on the extinction of
surnames. This problem is equivalent to that of the
extinction of a mutant allele in a population, although
this relation was noted only much later (Fisher, 1922;
Haldane, 1927). Currently, the theory of branching
processes (Harris, 1963; Athreya and Ney, 1972) is a
basic tool in the study of population genetics (Gale,
1990). Simultaneous advances in the description of the
mathematical properties and of the possible applications
of the theory have led to a better understanding of a
large number of problems that can be described through
multiplicative, branching dynamics (Feller, 1957). A
non-exhaustive list includes chain reactions (Everett and
Ulam, 1948), birth and death processes (Yule, 1924) and
their application to self-similarity in taxonomy (Chu and
Adami, 1999), queue theory (Kendall, 1951), extinction
cascades (Flyvbjerg et al., 1993), fragmentation pro-
cesses (Vlad, 1991) and human genealogy (Derrida et al.,
1999).
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Analytical techniques developed in the general frame-
work of branching processes permit to calculate a
number of statistical quantities for this class of systems,
like the probability that the descendants of a single
entity become eventually extinct or the distribution of
progeny sizes. Subcritical and critical situations, where,
on the average, the population keeps constant or
decreases with time, have been more often explored. In
particular, most results in population genetics are
derived under the assumption that the population is
finite and at equilibrium (Gale, 1990). The supercritical
case, in which the total population can diverge, is more
involved (Buhler, 1971, 1972; Sawyer, 1976; Lange and
Fan, 1997). Still, since many real systems include non-
stationary, often exponentially growing populations,
exact results for the supercritical case could have, apart
from their mathematical interest, an application to
demographic experiments. For example, it has been
recently shown that the observed distribution of family
sizes (defined as the set of individuals sharing their
surname), can be recovered through a model where the
total population grows exponentially in time (Manrubia
and Zanette, 2002). This seems to be an essential
ingredient to quantitatively recover the observations.
In this work, we study a class of supercritical

branching processes and obtain exact results for the
distribution of descendants after an arbitrary number of
generations have elapsed. In its discrete form, this
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problem was first tackled by Harris (1948), who gave it a
formal solution. In time-continuous formulation
(Athreya and Ney, 1972) it was solved by Kendall
(1949). Nonetheless, very few exact results have been
derived. Here we show that an appropriate rescaling of
the relevant variable returns fixed point equations for
statistical quantities both in the discrete- and contin-
uous-time formulations, and allows in many cases an
exact solution of the problem.
Our work is also motivated by the replicative

properties of certain biological systems (such as viruses
or bacteria) where the excess of resources allows an
exponential growth in the total population number
during a relatively long interval of time. Very often, the
initial individual continues replicating during the whole
length of the experiment. Hence, in the models to be
discussed we take this fact into account by setting to
zero the death probability of our elements. We will
consider both discrete and time-continuous systems, and
compare their properties under similar assumptions.
This comparison is important in order to disentangle the
mechanisms at play in real processes and their relevance
in defining the statistical properties observed. Indeed,
other recent studies have performed this comparison
between the two genealogies (discrete and continuous)
generated by a rare allele (Rannala, 1997) and by a
multi-locus, finite population (Rogers and Pr .ugel-
Bennett, 2000).
We start by analysing a supercritical branching

process evolving through discrete generations. At each
generation, all the individuals previously present are
included, plus their progeny, which is supposed to be
Poisson distributed. This situation is analogous to the
growth experienced by a viral population in standard
laboratory experiments. Indeed, a model for the
evolution of a viral population growing in the way
described and later subjected to repeated bottleneck
events has been successfully applied to the description of
a number of laboratory experiments (L!azaro et al.,
2002). Subsequently, and with the aim of linking the
discrete and time-continuous processes, we study the
case where each element either replicates or survives
unchanged to the next generation. A good example of
this type of processes is the replication of DNA by the
polymerase chain reaction (PCR). This reaction allows
the DNA target to replicate for a number of cycles,
which are equivalent to the number of generations of the
time-discrete branching processes. As a third example,
and using the approach introduced in the first sections,
the case of a pure-birth process is analysed. This
dynamics closely corresponds to the case of bacterial
growth, where duplication of each element happens
stochastically, independently of the other elements, and
at randomly chosen times.
The number of individuals present in the exponen-

tially growing regime attains a stationary distribution
for a properly rescaled variable. Our main result
concerns the derivation of a number of analytical
properties of that distribution. We study the three
different processes introduced and compare the results.
Further, we apply the rescaling procedure to experi-
mental results obtained from DNA amplification by
PCR and show that indeed a stationary distribution
appears during the few cycles where the molecular
population grows exponentially. Our results show that
the large fluctuations observed in the yield of DNA
obtained in different replicates cannot be simply
ascribed to the amplification of differences in the initial
composition of different samples.
Finally, as an additional illustration of the role of

population fluctuations, we study the discrete, Poisson-
distributed offspring model, and allow for mutations to
occur. Statistical distributions for the fraction of
mutants after a number of generations have elapsed
are numerically obtained. We show that the presence of
large fluctuations is relevant when interpreting repeated
laboratory experiments and, if mutations are consid-
ered, play a main role when bottlenecks occur.
2. Time-discrete processes

The most suitable formalism for the study of
branching processes is that of generating functions.
Given a probability distribution pðkÞ; its generating
function is defined as

F ðsÞ ¼
XN
k¼0

pðkÞsk ð1Þ

and represents a different way of encoding all the
information about pðkÞ: Indeed, a given probability
distribution is completely characterized if we know all of
its moments /kiS; which can be obtained by knowing
up to the i-th derivative of F ðsÞ (Harris, 1963).
Consider a branching process which starts with a

single individual at the 0-th generation. Suppose that the
average growth of the population is m; such that the
expected size of the population at generation g is
/nðgÞS ¼ mg: Under iteration of the branching process,
a distribution pgðnÞ stating the probability that nðgÞ
individuals are present at generation g develops. The
variable nðgÞ can be properly rescaled to a new variable
wðgÞ;

wðgÞ ¼
nðgÞ
mg

ð2Þ

with average value /wðgÞS ¼ 1; and which attains a
limiting stationary distribution hðwÞ in the limit g-N:
The moment generating function for hðwÞ is defined as

f ðsÞ ¼ lim
g-N

f ðs; gÞ � /eswgS; ð3Þ
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1The random variables wðgÞ are a martingale and, since their

expected value is /wS ¼ 1 by construction, they converge to a random

variable whether or not /w2S is finite and whether or not m > 1

(Harris, 1963).
2A demographic problem where a similar recursion equation

appears is that of the distribution of ancestors of a present individual

in a closed population (Derrida et al., 1999). Recently, Chang (1999)

has proven that the solution to that problem for w-0 is indeed of the

power-law type.
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which satisfies

f ðs; g þ 1Þ ¼ F ½ f ðs=m; gÞ�: ð4Þ

The function F ðsÞ is as defined in Eq. (1). In only a few
cases can hðwÞ be calculated explicitly. Some examples
can be found in Harris (1963), and Cistyakov (1957)
obtained the asymptotic form of the probabilities for w

close to its average value /wS ¼ 1:
The function f ðsÞ attains an asymptotically stationary

shape which allows the calculation of all the moments
of hðwÞ;

/wiS ¼
dif ðsÞ
dsi

����
s¼0

: ð5Þ

In the following, we study different prescriptions for
pðkÞ and analyse time-discrete and time-continuous
models using this methodology.

2.1. Poisson distribution of offspring

The evolution of our system starts with a single
individual at generation g ¼ 0: The first generation is
formed by its descendants and the individual itself.
Hence, the probability pðkÞ that there are k individuals
present at g ¼ 1 is

pð0Þ ¼ 0; pðkÞ ¼
e�ðm�1Þðm � 1Þk�1

ðk � 1Þ!
for kX1; ð6Þ

where m > 1 is the average number of ‘‘offspring’’ per
individual (including itself) after one generation, and
represents the average growth rate of the population.
The generating function for this probability distribution
can be readily calculated:

F ðsÞ ¼
XN
k¼1

e�ðm�1Þðm � 1Þk�1

ðk � 1Þ!
sk ð7Þ

¼ seðm�1Þðs�1Þ: ð8Þ

The solution s�o1 to the equation F ðsÞ ¼ s returns the
probability that the system goes eventually extinct
(Harris, 1963). In our case, and due to the deterministic
addition of all previous elements to each next genera-
tion, the only solution is s� ¼ 0 (total extinction is
not possible).
We are interested in the distribution of the progeny

after many generations. We have defined as pgðnÞ
the probability that n individuals are present after g

generations. If /nðgÞS is the average number of
individuals at generation g; then /nðg þ 1ÞS ¼
m/nðgÞS is the average size of the population at
generation g þ 1: This suggests that a rescaling of
the form

wðgÞ ¼
nðgÞ
mg

; ð9Þ

hðwÞ ¼ mgpgðwðnÞÞ ð10Þ
(Harris, 1963) would produce a function hðwÞ with
an invariant shape under increasing g; and allow an
evaluation of some of its limiting properties.1 The new
variable w represents the relative size of the population
of descendants of the initial sequence with respect to
the expected average mg:
Let us now consider the moment generating function

f ðs; gÞ of the variable w at generation g; which according
to Eq. (4) and rescaling (9) satisfies

f ðs; g þ 1Þ ¼
X
kX0

pðkÞ f
s

m
; g

� �h ik

; ð11Þ

where pðkÞ is as defined in Eq. (6). Hence,

f ðs; g þ 1Þ ¼
X
kX1

e�ðm�1Þðm � 1Þk�1

ðk � 1Þ!
f

s

m
; g

� �h ik

¼ f
s

m
; g

� �
e�ðm�1Þ½1�f ðs=m;gÞ�: ð12Þ

The function f ðs; gÞ reaches a limit shape for g-N;
where it becomes independent of g;

f ðsÞ ¼ f
s

m

� �
e�ðm�1Þ½1�f ðs=mÞ�: ð13Þ

This type of recursion often display scaling solutions.2

We make the ansatz that, in the limit s-�N -that is
for small w- the distribution hðwÞ is a power law with an
exponent b1; such that the regular part of the moment
generating function can be written in general as ½ f ðsÞ �
s��Bjsj�b1�1: Due to the fact that the progenitor
individual always survives to the next generation, the
probability of eventual extinction of the population is,
by definition, s� ¼ 0 in the current case. Substituting in
Eq. (13) and expanding around small f ðsÞ; we get 1 ¼
mb1þ1e1�m; which predicts that hðwÞCwb1 ; with

b1 ¼
m � 1

ln m
� 1: ð14Þ

The distribution hðwÞ increases up to wC1; and then
experiences a fast decrease (indeed faster than any
exponential function, see Derrida et al., 2000).
In order to obtain the moments of the distribution

hðwÞ; one can always try to solve Eq. (13) in powers of s

and get the expected values /wiS: We obtain for the
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first orders in s;

f ðsÞ ¼ 1þ s þ
1þ m

2m
s2 þ

3þ 4m þ 4m2 þ m3

6m2ð1þ mÞ
s3

þ
15þ 13m þ 22m2 þ 14m3 þ 7m4 þ m5

24m3ð1þ m þ m2Þ


 s4 þ Oðs5Þ; ð15Þ

where the coefficient of the first order in s results from
the normalization condition imposed in the rescaling,
/wS ¼ 1:

2.2. Single offspring per generation

Let us repeat the analysis of the previous subsection
considering that, at each generation, individuals in the
population either split in two with probability pð2Þ ¼ m
or just survive with probability pð1Þ ¼ 1� m: Other
possibilities are zero ð pð0Þ ¼ pðkÞ ¼ 0; k > 2Þ: The
fundamental equation, which is the recursion for the
moment generating function of the rescaled variable
w ¼ n=ð1þ mÞg in the limit g-N reads now

f ðsÞ ¼ ð1� mÞ þ m f
s

1þ m

� �	 

f

s

1þ m

� �
: ð16Þ

Again, the system has zero probability of extinction,
such that the singular part of f ðsÞ ¼ s� ¼ 0: Using the
same scaling ansatz as previously, we get that for small
w the distribution hðwÞCwb2 ; with

b2 ¼ �
lnð1� mÞ
lnð1þ mÞ

� 1: ð17Þ

A solution in powers of s for Eq. (16) returns

f ðsÞ ¼ 1þ s þ
1

1þ m
s2 þ

2

ð1þ mÞ2ð2þ mÞ
s3

þ
6þ m

ð1þ mÞ3ð2þ mÞð3þ 3mþ m2Þ
s4 þ Oðs5Þ: ð18Þ

It is possible to extract some information about the
tail of hðwÞ; which corresponds to the regime sb1; when
the set of probabilities pðkÞ is zero for k > kmax: Then,
the moment generating function is a polynomial in s

where only the last term contributes. For very large
values of g and s; we can approximate Eq. (16) as

f ðsÞBm f
s

1þ m

� �	 
kmax

; ð19Þ

where, in our case, kmax ¼ 2: If we define gðsÞ � ln f ðsÞ
and take logarithms in the previous expression, we get

gðsÞB2g
s

1þ m

� �
ð20Þ

which has a scaling solution of the form gðsÞpsa
0
; with

a0 ¼
ln 2

lnð1þ mÞ
: ð21Þ
Consequently, f ðsÞ becomes

f ðsÞpexpfsln 2=lnð1þmÞg: ð22Þ

Once more, for very large values of s; the integral which
relates f ðsÞ to hðwÞ can be calculated through the
Laplace method, since only the value of w which makes
the integrand maximal (w�) contributes,

f ðsÞ ¼
Z

N

0

eswhðwÞ dwCmax
w

½eswhðwÞ�: ð23Þ

If we now assume that

hðwÞpexpf�wag; ð24Þ

then ln f ðsÞpsa
0
pmaxw½sw � wa�: The maximal value is

attained for w� ¼ ðs=aÞ1=ða�1Þ; and hence

sa
0
Cs

s

a

� �1=ða�1Þ
�

s

a

� �a=ða�1Þ
; ð25Þ

from where

a ¼
ln 2

ln½2=ð1þ mÞ�
: ð26Þ

In general, for arbitrary kmax; the exponent above
turns out to be

a ¼
lnðkmaxÞ

lnðkmax=ð1þ mÞÞ
: ð27Þ

For the system to be nontrivial, kmaxX2; and mo1:With
these bounds to the parameters, one can see that a > 1;
and thus the tail of the distribution hðwÞ decays in all
cases faster than exponentially.
We can try to approximate the function hðwÞ in the

whole range of w through a composition of the obtained
initial power law plus the stretched exponential tail.
After normalising the function to unity, we get

hðwÞ ¼
a

Gððb2 þ 1Þ=aÞ
wb2e�wa

ð28Þ

with the exponents b2 and a given by Eqs. (17) and (26),
respectively. Thanks to hðwÞ being peaked around
w ¼ 1; the two asymptotic results for w-0 and w-N

approximate well the whole function. In Fig. 1 we
compare numerical simulations of the process with the
analytical result (28).
3. Time-continuous process

The continuous-time representation of the replication
process can be obtained by defining a replication rate
per unit time m; such that, in a small time-interval D;
the probability of replication is pð2Þ ¼ mD; and that of
remaining unchanged is pð1Þ ¼ 1� mD: The population
would grow exponentially at the rate m; such that after
a time t; /nðtÞS ¼ emt: Hence, the relevant rescaled
variable is now w ¼ n=emt: For a small time interval
D-0 we can take a first-order approximation for the
population growth, /nðt þ DÞS ¼ /nðtÞSð1þ mDÞ; such
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Fig. 1. Distribution functions of the rescaled variable w for the three models studied in this work. (a) Distributions obtained in the discrete-time

process with a Poisson distribution of offspring after 4, 6, 8, and 10 generations. We observe that, once the rescaling has been applied, these functions

collapse on a single curve hðlnðwÞÞ: The solid line shows the analytic result hðwÞCwb; which holds for small w: In this case, m ¼ 2:5: (b) Distributions
obtained in the discrete-time process with simple replication per generation (with m ¼ 0:25; triangles) and in the continuous-time process (m ¼ 0:2;
filled circles). Symbols stand for numerical simulations, solid lines for the analytical results (28) and (33).
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that the recursion equation for the moment generating
function becomes

f ðs; t þ DÞ ¼ ð1� mDÞ f
s

1þ mD
; t

� �

þ mD f
s

1þ mD
; t

� �	 
2
: ð29Þ

The continuous-time picture amounts to performing the
limit D-0 in the previous expression. Developing to
first order in D we obtain a partial differential equation
for f ðs; tÞ:

@f ðs; tÞ
@t

¼ m f 2ðs; tÞ � m f ðs; tÞ � sm
@f ðs; tÞ
@s

: ð30Þ

Once more, we can take advantage of the fact that the
solution to our problem is the time-independent func-
tion f ðsÞ obtained from the fixed point @f ðs; tÞ=@t ¼ 0;

s
d f ðsÞ
ds

¼ f ðsÞ½ f ðsÞ � 1� ð31Þ

which has the exact solution

f ðsÞ ¼
1

1� s
; ð32Þ

and where we have already included the normalization
condition f 0ðs ¼ 0Þ ¼ /wS ¼ 1: Performing an inverse
Laplace transform on Eq. (32) we immediately obtain
the distribution hðwÞ for the variable w;

hðwÞ ¼ e�w: ð33Þ

A different derivation of this result was already carried
out by Kendall (1949).
4. Comparison between the models

The three models studied can be easily simulated in a
computer. Both the analytical and computational results
reveal that they are very similar qualitatively. All the
obtained distributions have an initial power-law shape
before reaching a maximum close to the value w ¼ 1;
after which a fast decaying tail appears. In the time-
continuous case, the tail is a pure exponential function; in
any discrete case where pðk > kmaxÞ ¼ 0 it is a stretched
exponential with exponent larger than unity; if the
distribution pðkÞ is positive for all k; the tail decays
slower than a stretched exponential of the previous kind
but faster than any exponential function. Note that the
distribution in the continuous-time representation could
have been obtained by performing the limit m-0 in
Eq. (28), which implies b-0; a-1 and recovers Eq. (33).
It is interesting that the time-continuous process has a
distribution hðwÞ independent of the replication rate m:
The non-stationary distributions pgðnÞ can be readily

recovered by inverting, in each case, the rescaling
performed. This does not add further information on
the process to the results obtained by studying hðwÞ: In
the time-continuous case, the dependence on m (which in
this case only affects the growth of the population and
not the moments of the distribution), enters through a
trivial multiplicative factor to hðwÞ:
Although these supercritical processes have a well-

defined average at any moment in time, there are finite
differences between realizations also in the limit
g; t-N; as is pointed out by the fact that the variance
s2 ¼ /w2S�/wS2 remains positive,

s21 ¼
1

m
; s22 ¼

1� m
1þ m

; s23 ¼ 1 ð34Þ
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Fig. 2. Distribution of the background subtracted relative fluorescence

obtained in the exponentially growing phase (cycles 22–26) of the real-

time amplification of the 217 bp DNA fragment. The 96 replicates of

the reaction had an initial amount of DNA target of around 105

molecules in 50 ml of a buffer that contains 100 mM of each

deoxyribonucleotide triphosphates; 10 mM Tris-HCl, pH 8.3; 50 mM

KCl, 1 mM MgCl2; 5 units of Taq Gold Polymerase (Perkin-Elmer),

SYBR Green I (Molecular Probes, 1:75,000 dilution of the 10; 000

stock solution), and 12 pmol of the two flanking primers. Cycling

conditions were 94� for 20 s; 64� for 20 s; and 68� for 1 min; after an
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(the subindexes stand for the three models according to
the order of introduction in the text) and comparable to
the average of the process, which is unity in the rescaled
variable.
This has important implications when working with

multiplicative processes of this type, as for instance in
laboratory populations, which often experience an
exponential growth. The final output of an experiment
depends strongly on population fluctuations (particu-
larly relevant in the initial time steps), and repetition of
the same procedure might lead to essentially different
results. The fluctuations of this type of processes are
non-Gaussian and the errors obtained with few realiza-
tions can be ‘‘unexpectedly’’ large.
However, we have addressed up to now the ‘‘worse

behaved’’ situation, since starting with a single indivi-
dual at each generation maximizes population fluctua-
tions and variance (34) of the process. An initial
condition with a larger number I of individuals softens
the effect of fluctuations: the variable nðgÞ (number of
individuals at generation g) would now be the sum of I

independent, identically distributed variables. Hence, in
the limit of a very large initial population the final
distribution approaches a Gaussian curve.
initial step of enzyme activation of 5 min at 95�: Increase of

fluorescence was followed using a real time PCR detection system

(iCycler Thermal Cycler from Bio-Rad). Symbols represent experi-

mental results corresponding to the DNA yields obtained in five

consecutive amplification cycles. Experimental results are compared

with the solution of the time-discrete model with duplication at a rate

m ¼ 0:6 per generation. The inset displays the measured average

fluorescence for cycles 20–30. The slope of the line gives the population

growth rate in the exponential regime, 0:47 ¼ lnð1þ mÞ; and from it we

can derive the rescaling coefficient 1þ m ¼ 1:6; and the efficiency of the
process, which in this case is around 60%.

3The threshold cycle Ct corresponds to the cycle at which

fluorescence starts to be detectable.
5. Population fluctuations in PCR

Polymerase chain-reaction produces high yields of
DNA starting with a low initial number of DNA
molecules (Mullis and Faloona, 1987). The reaction is
carried out through a discrete amplification process that
involves the replication of DNA for a number of cycles
(usually less than 40). Each cycle consists of the
following steps: (i) heating at 94� to get the separation
of the two single strands of the DNA double helix, (ii)
hybridization of the oligonucleotides used as primers for
DNA synthesis, and (iii) elongation of the primers to get
a copy of the single DNA strands. Simultaneous with
DNA synthesis, double strands unable to replicate (until
the process of denaturization takes place again in the
next cycle) are being generated. Therefore, we can think
of each PCR cycle as corresponding to one generation of
a discrete-time branching process.
Recently, procedures allowing to follow the yield of

the PCR reaction on a cycle-by-cycle basis have been
developed (Wittwer et al., 1997). One of these, to be
used here, is based in the detection of the increase of
fluorescence that takes place when a double strand
DNA specific dye (SYBR Green I) is included in
the assay.
At each cycle, the DNA content is ideally doubled

(this means 100% efficiency, m ¼ 1). In ideal conditions,
differences in the final yield can only be ascribed to
differences in the initial concentration. In order to
observe the role played by population fluctuations (as
described in the theoretical models here presented), it is
convenient to carry out the PCR experiment under
conditions involving the replication of a fraction of the
total number of molecules (mo1). The lower the m; the
higher the difference between two independent realiza-
tions of the process. Some conditions that may decrease
the efficiency of the reaction include deviations from the
optimal concentration of substrates determined empiri-
cally (e.g. deoxyribonucleotide triphosphates and mag-
nesium ions). In the experiment carried out in this work,
we have amplified a 217 bp fragment (corresponding to
the sequence from nucleotide 1002 to nucleotide 1218 of
the cDNA of foot-and-mouth disease virus) using a
reaction mixture containing 1 mM of MgCl2; which
renders a reaction efficiency of 60% (see Fig. 2) and an
average Ct value of 22:770:5:3 In general, and for a
fixed value of the reaction efficiency, the lower the
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amount of DNA, the higher the Ct value. Too high
Ct values (corresponding to a low number of initial
molecules) may return unreliable results, due to the
generation of unspecific products and primer dimers
contributing to fluorescence. To circumvent this pro-
blem, the starting number of DNA molecules in our
reactions was of order I ¼ 105: In these conditions, the
increase of fluorescence in the exponential phase of the
reaction corresponds to the replication of the specific
product. Therefore, PCR corresponds to those cases
in which I cannot be lowered arbitrarily, and thus
variances well below those of the I ¼ 1 process are
expected.
The obtained results agree with our previous expecta-

tions. We have analysed the population distribution of
96 replicates from cycles 22 to 26, where the population
was growing at an exponential rate (see inset of Fig. 2).
The average increase of fluorescence over the indepen-
dent realizations fixes the value mE0:6 that we will use
in the rescaling of the distributions at subsequent cycles.
The data collapse of the five consecutive cycles cited
is displayed in Fig. 2. We observe that, indeed, the
distribution of scaled population sizes attains a sta-
tionary shape which, in this case, is broader than a
Gaussian but significatively narrower than the theore-
tical curve corresponding to the case I ¼ 1 (solid line
in Fig. 2).
A very interesting kinetic model for PCR was

developed and analysed by Stolovitzky and Cecchi
(1996). In a certain regime, they obtained a model
equivalent to the one here discussed. Their detailed
analysis of the role played by the size of the initial
population nicely showed that a transition from a broad
distribution with a scaling part to a Gaussian one takes
place as the number of starting molecules increases.
6. Role of mutations

Let us finish by analysing the spreading of neutral
mutations in a population developed from a single
individual. Some previous studies have analysed the
distribution of point mutations in models mimicking
PCR dynamics (Sun, 1995; Wang et al., 2000). Here we
will consider the discrete-time process with a Poisson
distribution of offspring described in Section 2.1 which
represents the growth of a viral population. The simplest
way to include mutations in its evolution consists in
using an infinite genome approximation and suppose
that mutations in a nucleotide occur with probability p

and are neutral. This simply means that we attach a
label to each of the individuals saying how many
mutations it carries (not affecting its replication rate,
that is its fitness). We are interested in the fraction ri of
individuals with i mutations after g generations. These
fractions are defined as the quotient between the total
number of individuals carrying i mutations and the total
population in the generation considered.
In this case, we are dealing with a multitype branching

process. Each of the lineages produced by a new mutant
is a Poisson branching process independent of the
evolution of the rest of the population. This fact permits
to obtain a number of analytic properties (Kingman,
1993; Lange and Fan, 1997). Here, we are interested in
the distributions of the fraction of mutants, qðriÞ for
each type. These quantities are relevant, for instance,
when a population experiences a bottleneck. Its sub-
sequent evolution depends critically on the subpopula-
tion selected. Thus it is important to know what are the
statistical properties of small subsets of individuals
generated by a realization of the process. We perform
the evolution on a flat fitness landscape (the average
number of offspring is not affected by the mutations).
We have studied the previous system numerically and

present results for a representative case with parameters
p ¼ 0:01 (mutation probability) and m ¼ 4 at generation
g ¼ 8 (see Fig. 2). With the parameters chosen, the final
population is formed by a large fraction of individuals
identical to the seed (as evidenced by the large weight of
qðr1Þ close to r1 ¼ 1) and by a varying, typically smaller,
fraction of mutants. The probability that around 15%
of the individuals in the last generation are mutants is
about 0.13. Although, after so few generations, mutants
are comparably less represented than forms identical to
the initial individual, we observe that the distribution of
their relative presence when the experiment finishes
is extremely broad, and varies along several orders of
magnitude. This evidences that repetition of the experi-
ment under the same conditions can lead to very
different compositions of the final population.
7. Conclusions

We have discussed three different supercritical
branching models with the aim of studying the effect
of population fluctuations under exponential growth of
the number of individuals. The distribution for the
expected number of individuals when the experiment
finishes has been analytically calculated. We observe
that this distribution is very broad, such that two
independent realizations typically differ in an amount
comparable to the expected mean if, initially, a single
individual started the process. Our results are of
relevance when studying different populations in their
exponentially growing phase. When neutral mutations
are added to the process, the composition of the final
population suffers again of large fluctuations in the
number of each mutant type present (Fig. 3).
The models here discussed are too simple to

quantitatively characterize real processes. We have seen
an experimental example where violation of the strict
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condition I ¼ 1 results in a reduction of the relative
fluctuations. Due to the critical contribution of the
initial population size to the fluctuations observed at the
end of the branching process, it would be desirable to
have an experimental system showing exponential
growth and starting with I ¼ 1: The development of a
bacterial colony from an individual could be one of
these systems. Experiments are being carried out to
assess whether fluctuations in the colony areas (assumed
to be proportional to the total number of cells) can be
explained with the models developed in this work. In the
case of viral growth, it is indeed possible to start the
experiment with a single infecting particle (Escarm!ıs
et al., 2002). It would be interesting to know if the
distribution of population sizes in that case agrees with
that for the model here studied. In lytic viruses, this
distribution could be easily estimated through the
calculation of the areas of lytic plaques at a given time.
The introduction of correlated fitness landscapes

(where natural selection would act to favor fitter
variants) would be also interesting to analyse from the
theoretical viewpoint, in order to get closer to real
processes. In addition, neither discrete generation
representations nor homogeneous, continuous-time
processes are expected to accurately represent real
replication dynamics. Nevertheless, we have derived a
number of qualitative features which are expected to
hold also in more realistic models (including for instance
age-dependent replication).
The models here studied belong to a class known as

non-self-averaging processes. That is, each realization of
the system keeps memory of the fluctuations it has
experienced along its history, and time averages do not
compensate for them. This fact was already pointed out
by Harris (1963), and implies that a whole statistical
characterization of the process requires averaging over
independent realizations. This effect has been also
studied in relation to the genetic variability expected in
natural populations (Derrida and Peliti, 1991; Higgs,
1995).
Some laboratory experiments subject populations to

repeated bottlenecks in order to ‘‘guide’’ its evolution or
to study how it would react in a similar natural
environment (Escarm!ıs et al., 1996, 2002; L!azaro et al.,
2002). It is to be expected that evolution under repeated
bottleneck passages reflects the non-self-averaging nat-
ure of the process and produces large deviations from
the characteristics of the initial element, and time
histories macroscopically different from realization to
realization.
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