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RNA molecules, through their dual identity as sequence and structure, are an appropriate experimental
and theoretical model to study the genotype-phenotype map and evolutionary processes taking place
in simple replicator populations. In this computational study, we relate properties of the sequence-
structure map, in particular the abundance of a given secondary structure in a random pool, with the
number of replicative events that an initially random population of sequences needs to find that
structure through mutation and selection. For common structures, this search process turns out to be
much faster than for rare structures. Furthermore, search and fixation processes are more efficient in a
wider range of mutation rates for common structures, thus indicating that evolvability of RNA
populations is not simply determined by abundance. We also find significant differences in the search
and fixation processes for structures of same abundance, and relate them with the number of base pairs
forming the structure. Moreover, the influence of the nucleotide content of the RNA sequences on the
search process is studied. Our results advance in the understanding of the distribution and attainability
of RNA secondary structures. They hint at the fact that, beyond sequence length and sequence-to-
function redundancy, the mutation rate that permits localization and fixation of a given phenotype
strongly depends on its relative abundance and global, in general non-uniform, distribution in

sequence space.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

RNA molecules are a very well-suited model for studying
evolving populations of replicators because they incorporate, in
a single molecular entity, both genotype and phenotype. While
errors in the replication process introduce mutations in the RNA
sequence (genotype), selection acts upon the function (pheno-
type) of the molecule. Since the biochemical function of RNA to
large extent is given by its three-dimensional conformation, the
genotype-to-phenotype map of RNA can be splitted conceptually
into a map from sequence to structure and a map from structure
to function.

At the heart of any evolutionary RNA model lies the mapping
from an RNA sequence to a structure, the folding process. While
the folding process of RNA sequence is complex and finally yields
three-dimensional tertiary structures, the planar secondary struc-
ture is a folding intermediate and represents a building block of
the tertiary structure. Therefore, it is often justified to use
secondary structure as a proxy for function. Using secondary
structure as approximation of tertiary structure is particularly
well justified for short sequences, since the probability of
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displaying tertiary contacts increases with the sequence length.
Nevertheless, even for a molecule as large as the complete HIV-1
genome, secondary structure has been determined and functional
RNA motifs identified (Watts et al., 2009). To clarify the intimate
relation of RNA structure to function is a very active field of
research and fitness landscapes of real RNA structures can be
constructed empirically (Held et al., 2003; Pitt and Ferré-D’Amaré,
2010). The RNA folding process depends on many parameters like
temperature or ionic conditions, and there exists a whole ensem-
ble of accessible structures for a given sequence. Nevertheless, in
first approximation the structure formed most likely is the
minimum free energy structure, used in this article. The predic-
tion of RNA secondary structures is reviewed in Schuster (2006).

Many other aspects of the RNA sequence-structure map have
been studied over the decades (Fontana et al., 1993; Schuster
et al., 1994; Schuster, 2003), building on the fact that there are
many more different sequences than structures. One important
observation is that there are few common structures, with many
sequences as preimages, and many rare structures, with only few
sequences adopting those structures, this revealing an uneven
fragmentation of the space of sequences into secondary struc-
tures. Furthermore, basic properties of RNA secondary structures
are known, e.g., as how the mean number of loops or stems, and
their sizes, vary as a function of the length of the molecule
(Fontana et al., 1993). Analytical approaches often do not consider
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energetic aspects of the folded state, but if included can yield
useful bounds to the statistical behaviour (Hofacker et al., 1998;
Clote et al., 2009). Only for short molecules, where extensive
folding of the sequence space can be performed, a complete
picture of these quantities can be given (Griiner et al., 1996a,
1996b). For larger molecules, the analysis has to be restricted to
subsets of the sequence space.

The size of the pool of considered sequences is of crucial
importance when theoretical or computational results are com-
pared to experiments. In SELEX experiments, aimed to produce
aptamers with a certain function and hence structure, both the
size of the pool and the length of the molecules are important
issues in determining the outcome of the selection process, as
experimental and theoretical work has shown (Bartel and Szostak,
1993; Sabeti et al., 1997; Gevertz et al., 2005). Furthermore, the
structural repertoire of the pool strongly depends on its nucleo-
tide composition (Knight et al., 2005; Kim et al., 2007). Through
an extensive computational study of 23 RNA motifs, it was shown
recently that natural and artificial RNAs occupy the same region
of sequence space (Kennedy et al., 2010). Results from different
experimental approaches show that evolved aptamers (Carothers
et al., 2004) or small catalytic RNAs (Puerta-Fernandez et al.,
2003) tend to have simple topologies. Simple structures like
stem-loops and hairpins are also found to be more abundant
and stable in non-coding regions of prokaryotic genomes than
expected by chance (Petrillo et al, 2006). Similarly, a large
fraction of non-coding RNAs in long vertebrate genomes fold into
simple stem-loop and hairpin structures (Pedersen et al., 2006). In
a recent article (Stich et al., 2008), we studied the structural
repertoire of an ensemble of 10® random RNA sequences. Most
abundant structural motifs are topologically simple and occur
frequently in natural RNAs (Gan et al., 2003; Cowperthwaite et al.,
2008). They could have also played a relevant role in prebiotic
scenarios where random polymerization was likely, by constitut-
ing simple building blocks able to combine into more complex
structures (Briones et al., 2009).

In the context of using RNA as model for evolution, and the
aforementioned duality of RNA sequence as bearer of the geno-
type and RNA secondary structure as phenotype, it is straightfor-
ward to implement mutation of bases as a way of introducing
variability in the genotype and selection as an operation acting on
the secondary structure. While in nature selection is not directed
towards a unique, optimal phenotype, and only responds to
relative advantages between peers at a fixed time, in simulations
we can fix a specific secondary structure as target of selection.
Such kind of evolutionary model has been introduced by Fontana
and Schuster (1987) and used thereafter for a wide range of
purposes and in many variants (e.g., Huynen et al., 1993, 1996;
Ancel and Fontana, 2000; Stich et al., 2007). As result of such type
of evolutionary models, sequences that fold into a given target
structure are found. In principle, this can be perceived as a
particular solution of the fundamental design problem which
consists of selecting the RNA sequence that will adopt a particular
secondary structure. For a comparison of computational methods
of sequence design, see Dirks et al. (2004).

In this contribution, we investigate how evolutionary pro-
cesses depend on the choice of the target structure. In a broader
context, the target structure is a simplified representation of a
functional phenotype, such that with due caution our results can
be applicable to more general situations. We work with short
sequences for different reasons. First, they are relevant in early
chemical (prebiotic) evolution, where high mutation rates limited
the length of molecules able to carry genomic information. This is
one of our scenarios of interest. Second, the prediction of
secondary structures is much more reliable for short sequences,
since the probability of tertiary interactions is the lower the

shorter the sequence. Last, but not least, by using short sequences,
computations are efficient enough to obtain well defined statis-
tical measures of the collective behaviour of the populations
studied. Though a recently published program permits to map
RNA sequence to structure in polynomial time (Waldispiihl et al.,
2008) - and hence allows for longer molecules - the necessity to
access the minimum free energy structure makes it impossible to
use this algorithm. In our analysis, we consider two characteristic
temporal quantities. The first is the search time, the number of
replicative events that an initially random population needs to
find the target structure. The second is the search-plus-fixation
time, the number of generations a population needs to fix the
target structure permanently within the population. In this work,
we try to shed light on the relation between the range of
secondary structures present in a pool of RNA molecules and
the time it takes for an evolving population to find a desired
secondary structure, i.e., function. By systematically choosing
many different target structures that vary in abundance within
a random pool, in complexity of their structure, in the number of
base pairs, and in their nucleotide composition, the quantities
defined above elucidate the influence of the sequence-structure
map on the evolutionary dynamics. Besides the already men-
tioned time scales, we also discuss the range of mutation rates
where evolutionary success, i.e., the fixation of the target struc-
ture is possible, and how this range depends on the abundance
and structural complexity of the target phenotype.

The article is organized in the following way. First, we describe
the structural repertoire of a random pool of RNA molecules.
Then, we introduce an evolutionary algorithm, where a secondary
structure is chosen as target for evolution. Using many different
structures, we find that the search for common structures is much
more efficient than for rare ones, probably an expected result.
However, we show in the subsequent sections that besides
abundance other parameters strongly affect the evolvability of
RNA secondary structures. We explore how the search process
depends on mutation rate, population size, fitness landscape and
selection algorithm, number of total base pairs, hairpin loop size,
and nucleotide content. The article is closed by a discussion of the
results.

2. Structural repertoire of random RNA pools

In this section we review some important properties of pools
of random RNA sequences, with special emphasis on their
structural diversity.

As a sequence folds, it rapidly attains the secondary structure
through formation of base pairs. Then, on a longer time scale,
long-range interactions between different parts of the secondary
structure may take place and yield a tertiary structure. However,
since the secondary structure is a biochemically relevant inter-
mediate and since a large part of the total folding energy is found
in the secondary structure, it is regarded as good proxy for
biochemical function, especially for short molecules (Schuster,
2003). We are interested in mapping a given sequence to exactly
one structure. To this end, we use the minimum free energy
structure (see Methods) and do not consider suboptimal foldings,
partition functions, or kinetic foldings.

Even in its simplest model, the mapping from sequence to
secondary structure is many-to-one and already complex from
a theoretical point of view. A neutral network is defined as the
subset of all sequences sharing their minimum free energy
secondary structure. Usually it is assumed that two sequences
in a neutral network are mutually accessible if it is possible to
attain one from the other by means of single point mutations in
the sequence. If there are sequences in a neutral network which
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cannot be connected in this way, the neutral network is then
formed by disconnected groups of sequences (Griiner et al.,
1996b). Following (Fontana et al., 1993; Schuster et al., 1994;
Schuster, 2003), we review some basic properties of the RNA
landscapes: (a) There are many less structures than sequences
and the set of structures can be divided into common and
rare structures: While there are 4" sequences of length n (fully
spanning the sequence space), the number S, of different struc-
tures (the structure space) is much smaller. Based on theoretical
studies (Waterman, 1978), the expression S,~0.7131 x
n=3/2(2.2888)" has been obtained as an upper bound to the
number of structures with at least three unpaired nucleotides in
a terminal loop and where a single base pair can form a stack
(Griiner et al., 1996a; Hofacker et al., 1998). One of the funda-
mental results in this context is that the distribution of RNA
structures within pools of random sequences is very biased, as
theoretical studies and observation of natural secondary struc-
tures demonstrate (Fontana et al,, 1993; Schuster et al., 1994):
common structures are typically many orders of magnitude more
frequent than rare structures, and there are much less common
structures than rare ones (Schuster et al., 1994; Griiner et al,,
1996a; Joyce, 2004). (b) Sequences that fold into common
structures seem to be randomly distributed in sequence space.
This hypothesis results from the observation that a common
structure can be found within a relatively small neighborhood
of any sequence, a feature called shape space covering. (c) Neutral
networks of common structures are connected if the sequences
are long enough. Furthermore, statistical properties of the folded
structures, such as number and sizes of stacks and loops as
function of the sequence length have been computed (Fontana
et al., 1993). Applying different folding algorithms, it has been
shown that structure statistics is relatively insensitive to the
precise folding algorithm used (Tacker et al., 1996).

In a previous work (Stich et al., 2008), we described the results
of the folding of M=10® random RNA sequences of length n=35
nucleotides (nt). As secondary structure of each molecule, we
took the minimum free energy structure as given by the fold ()
routine from the Vienna RNA Package (Hofacker et al., 1994).
These sequences fold into roughly 5 million different secondary
structures. While some of the most frequent structures are
produced by tens of thousands of different sequences, the
majority of structures are rare, and just represented by 1 or
2 sequences. In the following, we will use the absolute frequency f
of a structure in the random pool, and its relative representation
r=f/M. While common structures are easily obtained, even in
small populations, and do not depend strongly on the mean
nucleotide composition of the pool (since there exist many
sequences compatible with common structures), sequences fold-
ing into rare structures often need to be designed, for instance by
means of inverse folding algorithms (Schuster et al., 1994;
Hofacker et al., 1994).

Our classification of secondary structures relies on the number
of basic structural elements forming secondary structures, i.e,
hairpin loops, stacks, bulges and interior loops, and multiloops.
We found that only 21 structure families are enough to cover all
5 million different structures found in the random pool. In
increasing order of complexity, we have stem-loops (SL), simple
hairpins (HP), hairpins with more structural elements, denoted as
HPx, with x standing for the total number of bulges and/or
interior loops, double stem-loops (DSL), also with increasing
number of bulges/interior loops (DSLx), hammerhead (HH and
HHXx) structures, triple stem-loops (TSL and TSLX), and others.
Using this classification, we were able to determine the distribu-
tion of structure families as function of structure rank. The most
frequent structures belong to the SL family, followed by the HP,
HP2 and HP3 families. In Table 1, we give representative

Table 1

Table of the structures used in Figs. 1, 2, 3(a), and 6. The first 16 structures are
most abundant structures of their respective families. The structures sHP and sHH
have already been used in Stich et al. (2007). The letter H denotes the number of
hairpin loops, I stands for interior loops, B for bulges, and M for multiloops. The
frequency f has been taken from the folding of 10® sequences (Stich et al., 2008).

Name H I[+B M Structure in bracket notation f

SL 1 - e e ) ) e 62,893
HP 11 = e D)) ) ) e 9977
HP2 1 2 =0 ))))) ) ) e 1275
HP3 1 3 = e )Y ) e 144
HP4 1 4 T O O A )).)))) ) )) 16
HP5 1 5 - ).))) ) ) 3
HP6 1 6 = ).)))) ) ) 1
DSL 2 - - D)) ) e (((( )))) 1505
DSL2 2 1 (CCCaae)))) e (0. (( ))-))) 190
DSL3 2 2 = ) ) e ) ). 25
DSL4 2 3 - CCCC OO ) ) ) (e 3
DSL5 2 4 - [ ) (. D)) 1
HH 2 - 1T (. ))) L ))))))) . 37
HH2 2 1 T (00 (. )) - ((Ca))) o)) ))) . 7
TSL 3 - = ) e e e 13
TSL2 3 1 - ( )L D)) ) 2
sHP 1 1 - Ceeeec (CCoe))) et ))))))) 24
sHH 2 - T (.0 )))) (CCC.))) ) 1

examples of the most relevant structure families — usually they
are the most abundant structures as found in Stich et al. (2008) -
together with their abundance f. These structures are used as
target structures in the following sections.

3. Evolutionary algorithm

The folding of random sequences yields a static picture of the
sequence-structure map. For reasonably long molecules, locating
a precise structure through this procedure is very unlikely in
case it represents a very rare phenotype. The search can be
efficiently performed through evolutionary dynamics, a process
that becomes possible only once replication within a population
has arisen, that is, once evolution through Darwinian selection is
triggered.

Our model consists of a population of N replicating RNA
sequences, each of length n=35nt. At the beginning of the
simulation, every molecule of the population is initialized with
a random sequence. As a molecule replicates, each nucleotide has
a probability (mutation rate) u to be randomly replaced by
another (or the same) type of nucleotide.

At each generation, the sequences are folded into secondary
structures as described (see Methods). We define a target sec-
ondary structure (or motif) which represents in a simple way
optimal performance in the given environment. Every folded
structure i is compared with the target structure by means of
the base-pair distance d;, defined as the number of base pairs that
have to be opened and closed to transform the given structure
into the target structure (Hofacker et al., 1994). The closer
a secondary structure is to the target structure, the higher is
the probability p(d;) that the corresponding sequence i replicates.
This probability is given by

p(di) =Z~'exp(—pd;). (€3]

The parameter f denotes the strength of selective pressure and is
here chosen as f=2/n. The distance d scales with the length
of the molecule. To avoid a simple dependence on n, we rescale
B by the length of the molecule. The normalization factor is
Z= Ef’;l exp(—pfd;). Generations in our simulations are non-
overlapping and the offspring generation is calculated according
to Wright-Fisher sampling at each time step.
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Starting with a population of random sequences, the popula-
tion first evolves through a search regime. Usually, the average
distance of the population to the target structure, d = Z?’ d;/N,
decreases during this phase. Then, at generation g, for the first
time a molecule folds into the target structure. However, due to
the stochastic nature of mutation, the population may lose again
the target structure. Nevertheless, if the mutation rate is not
too large (below the fixation threshold), the average number of
correctly folded molecules increases within the population and
the target structure gets fixed at generation gg. Eventually, the
population reaches an asymptotic regime characterized by statis-
tically constant values for d and p, the fraction of molecules
folding into the target structure. In absence of an analytic theory
for the system, we determine the fixation threshold as the value
U at which the curve gg(u) diverges. In previous work, we have
described several aspects of the evolutionary dynamics of popula-
tions subjected to such type of evolutionary algorithm (Stich
et al., 2007, 2010a, 2010b).

4. Search times as function of the mutation rate

Based on the classification of the structure families (Stich et al.,
2008), we can check how the shape of the secondary structure
and its frequency in a random pool affect the search time needed
to find it. As structures, we use the most abundant structure
(MAS) of 16 structure families plus a hairpin and hammerhead
structure previously used in Stich et al. (2007). The 16 structure
families represent all sequences of the pool (M=10%), with
exception of 521 sequences that belong to 5 rare structure
families (Stich et al., 2008). The chosen structures are given in
Table 1.

In Fig. 1(a), we show for the 18 structures how the search time
varies as function of the mutation rate. We observe strong
differences among the structures. While some structures are
found very easily, almost independently of the mutation rate,
others are found only in a limited range of y and only after a long
search process. In general, a search time curve is U-shaped, with
an increase of the search time for low mutation rates - only little
diversity is introduced, and for large mutation rates — too many
deleterious mutations interrupt the path from random to sub-
optimal structures and further to the target structure.

The curve for the MAS of the SL family, the most abundant
structure found in the random pool lies at g~ 1 for all . This

a

T
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o—o HP2
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n

structure is so frequent that even the starting pool already
contains on average 6 sequences that fold into that structure.
Also the MAS of the HP family is either already present or found
after very few replicative events. Therefore, these curves do not
bend up for any pu.

The two next-higher curves correspond to the MAS of the HP2
and DSL families. We see that for small values of g, the values of g
increase as expected. However, for large p, the curves still do not
bend up. As u increases the selection and search process becomes
less efficient and in the limit #—1 at each generation a new
random population is produced. There, a common structure with
relative representation r can be expected on average to be found
after approximately g~ 1/(rN) generations. In this case, we
calculate g~ 10 which agrees well with the values obtained
numerically. This means that common structures are found easily,
almost independently of the mutation rate.

The next-higher curves correspond to families HP3 and DSL2.
Both structures are found equally fast, approximately after 14
generations over large ranges of u. Both structures have not only
a comparable relative representation in a random pool, but also
coincide in the total number of base pairs (like also the MAS of
HP2 and DSL families). This motivates us to study further below
not only the effect that the structure frequency has on the search
process (Section 6), but also the influence of the number of base
pairs for structures with equal abundance (Section 7).

For less frequent structures, the curves shift upwards and bend
into the U-shape. In general, MAS of higher-order families are
found more slowly than MAS of simple structure families. Also
the interval of i where the search is effective becomes narrower
as the curve move upwards. It is important to note that due
to these effects, a frequent structure has a two-fold advantage in a
search process compared to a rare one: lower g for all x, and
larger interval of u where g is close to its minimum value.

This brings us to the question of whether the population for
the considered mutation rate actually fixes the target structure. In
Fig. 1(b), we show for five (common and rare) structures both
search and search-plus-fixation (short: fixation) times. We deter-
mine the fixation time as the generation gr after which at least
one molecule of the population folds into the target structure
uninterruptedly for 500 generations.

Obviously, the fixation curves lie always above the corre-
sponding search curves. All computed fixation curves bend into
a U-shape, indicating that even for common structures fixation is
only possible in an interval for the mutation rate. Nevertheless, as

[c—o HP2
HP3

o—o HP4

&—o HP5 3
Hps |

0 001 0.02 003 0.04 0.05 006 0.07 0.08
n

100

Fig. 1. (a) The search time g as function of the mutation rate u for 18 structures (16 most abundant structures (MAS) of a structure family plus the hairpin sHP and
hammerhead sHH motifs considered in Stich et al., 2007). In general, the search curve shows a U-shape, pronounced for rare structures and flattened for common ones.
Also, frequent structures show significantly shorter search times. Search times have been determined from R=200 independent realizations of populations with size
N=10,000. (b) Comparison of the search times g (from (a)) and search-plus-fixation (short: fixation) times g as function of the mutation rate u for the five structures of the
structure families HP2, HP3, HP4, HP5, and HP6. The fixation curves show the typical U-shape above the search curve. For common structures, gr diverges at a value of u
larger than that for rare structures. Fixation times have been determined from R=20 independent realizations of populations with size N=10,000.
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for the search curves, there are significant differences between
rare and common structures. While for the structure of the HP2
family the fixation curve diverges approximately for u~ 0.08, for
the rare HP6 structure, this happens for p~0.02. This clearly
shows that the critical mutation rate is not only a property of
sequence length, but strongly depends on phenotype.

5. Dependence of search times on population size and
evolutionary algorithm

Before exploring the dependence of the search time on the
motif frequency, we want to understand to which extent the
specific evolutionary algorithm and the system size influence
the results. To this end, we investigate three variations of the
evolutionary algorithm described above. Using still the probabil-
ity function

p(dy) = Z "exp(—pdy), )

we consider the following modifications: (a) Scaling of the
selective pressure parameter f5. It may be constant, like f; =2/n
as above, or time-dependent, e.g., f, = 1/d, where d is the average
distance of the population to the target structure (Stich et al.,
2007). (b) Instead of using the base-pair distance d°?, we use the
Hamming distance d". The Hamming distance can only be
measured between molecules of the same length, since it results
from a positionwise comparison of the structural state. Two
molecules may have a large base-pair distance and a significantly
smaller Hamming distance. The first is actually a better measure
of the number of changes to be performed to go from one
structure to another. As an example, structures ((((....))))
and ((((...)))). are at a base-pair distance of 8 but at a
Hamming distance of 2, while structures ((........ )) and
.(((....))) . are at a Hamming distance of 6 and at a base-pair
distance of 3. In this sense, the two distance measures do not
value in the same way the similarity with the target and thus
perform differently along the selection process (see below). Tree-
edit distance has been used for comparison, needing longer
evolution and simulation times and has not been utilized further.

In Fig. 2(a) we show for the four algorithms (besides the
standard (f;,d°P) also (f,d"), (f,,d°P), and (B,,d")), and for a
specific target structure and mutation rate, how the search time g
varies with the population size N. All curves are decreasing, i.e.,
regardless of the chosen algorithm, a given target structure is
easier to find if the population is large. This is not surprising since
a large pool contains with a higher probability a sequence folding
relatively close to the target structure, and hence offers the
population the possibility to advance faster. For both distance

a
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measures, the faster algorithm is the one with time-dependent
scaling which is probably due to the fact that 8, > ;; whenever
d<n/2=17.5 which is usually fulfilled after the initial stages
of the evolution (and, depending on the target structure and
distance measure, even already for the initial random population).
We also observe that using the base-pair distance, the search
process is almost one order of magnitude faster. This may be due
to the fact that a sequence can have a structure with a small
Hamming distance to the target, while the number of mutations
necessary to yield a sequence whose minimum free energy
structure coincides with the target structure may be much larger.
On the contrary, if the base-pair distance is small, also the
number of necessary mutations is generally small. Nevertheless,
this may also depend on the considered target structure.

A different constant value of f3, other than §; =2/n, obviously
changes the selective pressure and hence the velocity of the
evolutionary process, as shown in Fig. 2(b).

The main result of this section is that the evolution algorithm
is robust and that the qualitative behavior of the dependence of
the search time on frequency does not depend on algorithmic
details.

6. Search times as function of the motif frequency

In the sections above, we have shown how the search time
depends on mutation rate, population size, evolutionary algo-
rithm, and selective pressure parameter, and therefore we fix now
the corresponding parameters and explore how the frequency of a
given motif (or secondary structure) influences the search time.

In Fig. 3, we show how g varies as a function of the frequency
of appearance of each structure in the random pool (see Table 1).
We observe that the more common a given secondary structure
(motif) is, the faster is it found in the evolutionary process. This
means that the frequency, a property purely related to the
sequence-structure map, and a plain consequence of the folding
landscape, clearly correlates to the velocity with which a struc-
ture is found in an evolutionary process. In other words:
sequences with simple motifs are not only more frequent but
also easier to find through selection (in the relevant case when
they are not present in the initial population and have to be found
through mutation and selection of that starting pool).

The lowest data points displayed correspond to the MAS of the
SL, then come the HP, HP2 and DSL families. As anticipated in
Fig. 1(a), the most frequent structures have the shortest search
times. The other structures with f > 1 have intermediate search
times, in general increasing as f decreases. With f=1, we present
structures belonging to classes HP6, DSL5, and HH (the sHH

10° !
0.1 1 10

/By

Fig. 2. (a) The search time g as function of the population size N for four different evolution algorithms (see text). (b) The search time g for different strengths of the
selective pressure. The target structure is the sHP structure, the mutation rate is x = 0.02, population size N=10,000, and the number of independent realizations is

R=200.
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Fig. 3. (a) Search time g as function of the frequency of the secondary structure for the 18 structures considered in Fig. 1. The search time clearly decreases with the
frequency. The parameters are y = 0.02, N=10,000, and R=200. (b) Search time g as function of the frequency for structures with different total number of base pairs. Here,
all structures belong to the HP structure class and have a hairpin loop of size 4. The total number of base pairs I varies from 6 to 9 (see legend). Again, the search time
clearly decreases with the frequency and furthermore structures with large [ seem to be found faster. We have used 11 structures with [=6, 11 with [=7, 11 with [=8, and
10 with [=9, chosen randomly but with the aim of covering the whole frequency range. The parameters are ¢ = 0.02, N=500, and R=200. In (a, b), the straight line stands
for the average number g, of attempts required to find a structure of frequency f within a random population of size N (see main text).

structure). There, the values of g spread a lot which may be due to
at least two effects. First, rare structures may be composed of a
large number of short loops and stems and may be very biased in
their nucleotide composition, and therefore only accessible to few
sequences. Second, since frequencies were determined by folding
random sequences, the observed frequency f=1 among 10%
randomly sequences may over-or underestimate the actual fre-
quency (that could only be obtained by exhaustive enumeration
of sequences or estimated by inverse folding).

To give a quantitative measure of the efficiency of the evolu-
tionary search, we have added in Fig. 3 a curve corresponding to
the number of generations g, required to find a structure of
frequency f in the limit x—1 (or in a random search without
selection), gr=(M/N)f~!, with M=108 being the size of the
random pool used to determine f, and N the population size.
Except for the most abundant structures in the SL and HP families,
all search times are below the random expectation g;.

7. Search times as function of the number of base pairs

In the following, we study in more detail how the search time
g depends on the total number of base pairs of the secondary
structure. Our results are summarized in Fig. 3(b), where we show
g as a function of the frequency f for four different numbers of
base pairs. To avoid possible effects from other structural ele-
ments, all selected structures belong to the HP family and have a
hairpin loop of size four. Then, we have drawn the structures
randomly across the frequency range, 43 structures in total.
For example, the black curve is computed by calculating g for
11 structures with 6 base pairs in total and frequencies ranging
from 3 to 6607. Again, we observe a decrease of g as the frequency
of the structure increases. This decrease is unambiguous and also
found for other numbers of base pairs (other curves), and hence
confirms the results shown above for a larger sample. As in
Fig. 3(a), we represent the expectation of a random search,
g- =5 x 10°f~1 (in these examples N=500), and obtain a similar
performance of the evolutionary process. Since it seems that for
larger number of base pairs the values of g are systematically
lower, we explore the dependence on the number of base pairs
explicitly.

In Fig. 4, we show how the search and search-plus-fixation
times depend on u for three structures of equal abundance in a
random pool (f=50). A strong difference between the structures is
observed. The only difference lies in the number of base pairs
since the structures have not only equal abundance, but are also
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Fig. 4. Search time g (dotted) and search-plus-fixation time gg (solid) as function
of u for three HP structures with frequency f=50, consisting of a hairpin loop of
size 4 and a total number of base pairs =13 (black), [=8 (red), and [=3 (green).
The parameters are N=10,000 and R=100. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

HP structures with a tetraloop. The black curve shows that the
search time for an HP structure with 13 base pairs is found
quickly with a weak dependence on g, and fixed efficiently over a
range of 0.002 < u < 0.06, an HP structure with three base pairs is
fixed only in a narrow interval of 0.002 < y < 0.02.

To show that this behavior is more general, we study in
Fig. 5(a) for a larger sample of structures (120 structures from
the HP family) how the search time g decreases with the number
of base pairs. To minimize the influence of the frequency of the
structure and a possible effect of the loop size, we have con-
sidered only structures with frequency 50 and hairpin loop of size
four. From this figure we can conclude that g decreases with
increasing number of base pairs. A qualitatively similar behavior
has been observed for a sample of structures of the DSL and HP2
families (results not shown). This result points to a non-trivial
distribution in sequence space of structures with certain motifs.
Actually, we know that stable structures with few base pairs show
a nucleotide composition significantly far from 25% per type
of nucleotide (Stich et al., 2008). On the other hand, structures
with long stacks (which are usually much more stable) admit
more variation in their composition. Thus, the decrease in g with
number of base pairs is reflecting the spread of the correspond-
ing neutral network in sequence space. In the next section,
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Fig. 5. (a) The search time g as function of the total number of base pairs ! for structures from the HP structure family. The search time clearly decreases with the total
number of base pairs. We have chosen structures with frequency f=50 and hairpin loop of size 4. We have used all 120 structures that fulfill the criteria: 1 for [=2, 5 for
1=3, 10 for [=4, 16 for [=5, 19 for [=6, 16 for =7, 14 for =8, 13 for [=9, 7 for =10, 5 for =11, 9 for =12, and 5 for [=13. (b) The search time g as function of the hairpin
loop size p for all 120 structures from the HP family with frequency f=50 and total number of base pairs [=7. 17 for p=3, 16 for p=4 (already considered in (a)), 18 for
p=>5, 6 for p=6, 15 for p=7, 10 for p=8, 9 for p=9, 4 for p=10, 5 for p=11, 6 for p=12, 2 for p=13, 4 for p=14, 3 for p=15, 3 for p=16, 1 for p=17, and 1 for p=19. No
significant dependence is observed. (a, b) The parameters are = 0.02, N=500, and R=200.

we explore the relation between search time and composition in
more detail.

In Fig. 5(b), we display g as a function of the loop size, keeping
the total number of paired bases constant. We consider 120 HP
structures with frequency 50 and a total number of base pairs of
7 (including the 16 structures with loop size 4 from (a)). No
significant dependence on the loop size is observed.

8. Search times as function of the nucleotide composition

Another parameter that influences the sequence-structure
map is the nucleotide composition of the underlying sequences.
For example, rare structures have on average a bias towards a
large content of G (Stich et al., 2008). Since G favors the formation
of strong base pairs, short stems appear with higher probability,
which in turn often build structures with less common structural
elements. When a structure presents restrictions in the possible
composition compatible with it, it immediately limits the amount
of possible different sequences. Suppose an ensemble of mole-
cules formed by all those sequences containing a fraction fx of
each type of nucleotide, K={ A, C, G, U }. The number Ns of
different sequences is

n!
- [Tkl Tfkn+11°

where I'[x] is the Gamma-function (that extends the factorial
function to non-integer values) and n is the length of the
sequences. Deviations in the composition from 25% for each
nucleotide cause decreases in Nj, i.e., the sequence diversity of
the ensemble diminishes. For example, an ensemble of sequences
of length n=35 with all four nucleotides equally present
(NP =5.59 x 10'®) is almost 5000 times more diverse in terms
of sequences than an ensemble formed equally by A, C, and G, but
not containing U (N =1.16 x 10").

Our previous analyses (Stich et al., 2008) showed that the
relative nucleotide content of the sequences folding into a
particular structure family deviates from 25% significantly for
practically all structure families. Hence, we expect that by tuning
the mutation rates of the four nucleotides, the search process may
be also improved or hampered. The size of the space of attainable
sequences is in turn modified, as explained above.

In Fig. 6, we show for three target structures, a common, a rare,
and one with an intermediate g value, how the nucleotide
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Fig. 6. Search time g as function of u for the structures representing families HP2,
HH2, and DSL5 as the nucleotide composition is varied. The population size is
N=10,000 and R=200 independent realizations were performed.

composition influences the search time, comparing always with
the case of 25% of mutation probability for all types of nucleo-
tides, A, C, G, and U (Fig. 1). First, we consider the MAS of the HP2
family, a common structure, and a distribution of mutation
probabilities of (fa.fc.fc.fu)=(0.23,0.26,0.30,0.21), the average
composition of rare structures. The resulting curve for g(u) shows
that there is no effect of the nucleotide bias on the search time for
this structure. The same nucleotide bias is now applied to a rare
structure, the MAS of the DSL5 family. This time, the g values are
significantly lower and hence the search process is more efficient.
A comment on the actual diversity of sequences attainable
through this procedure is here due. Eq. (3) yields the number of
sequences obtained with a fixed composition of nucleotides. The
probabilistic approach used in the evolutionary process permits
deviations from that average which are of the order of /n (and
consequently lead to changes of possible mutation probabilities fi
of the order of 1/./n), that is, they are especially important for
short sequences. The actual diversity explored by the population
is proportional to Ns and we can compare two populations
searching around different average compositions by the ratio of
the corresponding values Ns.

Finally, we consider the MAS of the HH2 family which without
bias took intermediate search values. We here apply two different
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nucleotide compositions: one corresponds to the average compo-
sition of the 7 sequences that fold into that structure (data from
Stich et al., 2008) and is called adjusted, f,q;. The other one, called
deplaced, corresponds to a composition fgep = 0.5—f,¢; (restricting
ourselves to values f,q; < 0.5). This is just an example. Obviously,
there is no unique way of deplacing a composition from the
optimal one. The adjusted composition has mutation rates of
(fafefcfu)=(0.22,0.26,0.32,0.20), and the deplaced one rates of
(fa.fc.fe.fu)=(0.28,0.24,0.18,0.30). The curves clearly demonstrate
that an adjusted composition decreases the search time, while a
deplaced one increases the search time with respect to the neutral
composition, thus clearly revealing the position occupied by the
neutral network of that structure in sequence space. In particular,
for large mutation rates, the difference in g values between a
favorable and an unfavorable composition may be of one order of
magnitude in g, and similar g values are obtained for mutation
rates differing in a factor of two. Although the displayed curves
just represent a few examples, we expect the effect to be generic,
although, in any case, the optimal composition is structure-
dependent. Regarding the number of attainable sequences Ns,
the even composition of 25% yields in this case 3.63 times more
different sequences than the adjusted composition and 1.78 times
more than the deplaced one. The fact that g is lowest for the
adjusted case in spite of the low number of attainable sequences
N;, clearly demonstrates the importance of an appropriate nucleo-
tide bias for the search process.

9. Summary and discussion

Summary: The results presented in this article relate properties
of the sequence-structure map, which are completely determined
by the underlying RNA folding process, with properties of an
evolving population, in particular the search and search-plus-
fixation time. We have shown in this article that the abundance of
a structure in a random pool is an important parameter that
determines the search process. Nevertheless, it is clearly not the
only one: the motif and the composition of the sequence (nucleo-
tide bias), together with the structure abundance determine the
search process.

For a set of 18 structures representing the relevant structure
families for molecules of length 35 nt, the evolutionary accessi-
bility has been shown in Fig. 1(a): structures which are common
in a random pool are found faster than rare structures for the
range of relevant mutation rates. This result probably could have
been expected since frequent structures have a larger set of
sequences folding into the same structure and hence the possi-
bility that a population finds any of the sequences is higher.

Fig. 1(a) confirms that rare structures are not only found much
more slowly, but also that the search is only effective in a small
range of the mutation rate. This finding has important conse-
quences for the evolvability of RNA structures: It means that
unless the mutation rate is sufficiently low, finding specific rare
structures is difficult. For inappropriately high mutation rates, the
population will be typically composed of simpler and more
frequent structures, and rare structures will go unnoticed. This
effect becomes even more pronounced if we consider the search-
plus-fixation time (Fig. 1(b)), which is the quantity that describes
evolutionary success within the framework of this model (Stich
et al., 2007). The fact that different structures, even of the same
length, do not necessarily have the same search times, search-
plus-fixation times, or identical values of the asymptotic values of
the population (like d or the fraction of correctly folded mole-
cules), has been already shown before (Stich et al., 2007). There,
however, only two different structures were considered, which
also behaved relatively similar, while here we have worked with

18 structures in detail and have been able to show that the ranges
of mutation rates permitting search and fixation may differ
strongly. This result adds a new variable to the parameters that
influence the critical mutation rate for a phenotype to be present
in a population. Up to now, neutrality (that is the existence of
many different genotypes yielding the same phenotype) has been
discussed as an important parameter in determining the mutation
rate that a population can bear without losing its master pheno-
type, or its viability. We here show clearly that rare phenotypes
are at the same time more difficult to find and much more
difficult to maintain in the population.

In Fig. 3, we presented for the 18 representative structures
how for a given mutation rate the search time depends on the
frequency. These structures cover the whole accessible frequency
range (more than 5 orders of magnitude) and have search times
varying on more than 3 orders of magnitude. We show therefore
convincingly that frequent structures are faster to find and
confirm the findings already presented in Fig. 1.

To clarify to which extent the results depend on elements of
the secondary structure such as loop size and number of base
pairs, we performed additional simulations for 375 other struc-
tures. Fig. 3(b) clearly showed that the findings of Fig. 3(a) are
generic and by no means special to the 18 structures first chosen,
and that for practically the whole frequency range, structures
with more paired bases are easier to find. To show this more
clearly, in Fig. 4 we have displayed for three structures of equal
abundance that the search and search-plus-fixation process is
much more efficient for structures with many base pairs, thus
showing that evolvability of structures goes beyond mere abun-
dance. The latter finding has been further investigated and in
Fig. 5 we have studied how the search time depends on the total
number of base pairs and on the loop size. While the number
of base pairs influences strongly the search time, the loop size
does not.

Finally, we have investigated the influence of the nucleotide
composition on the search time, considering mild biases from
the equiprobable distribution of 25% for all types of bases.
As shown in Fig. 6, a bias towards an unfavorable (favorable)
nucleotide composition for a given rare structure leads to an
increase (decrease) of the search time. However, for frequent
structures, a mild bias does not show any significant effect on the
search times.

Neutral networks: Many of the results of this article can be
interpreted in terms of the structure and size of neutral networks.
If all sequences folding into the same secondary structure are
related to each other by single mutational events, the network is
said to be connected, while it is also possible that the network is
disconnected and comprises different components which are at a
mutational distance larger than one. Rare structures have smaller
neutral networks which furthermore may be disconnected and
located in some restricted areas of sequence space. The abun-
dance of a given structure could have conditioned its appearance
in natural RNA, functional motifs, as studies with molecules up to
18 nt in length have shown (Cowperthwaite et al., 2008), further
demonstrating that rare motifs are difficult to access through
evolution on neutral networks of common motifs. That is, they are
not homogeneously distributed in sequence space. As a conse-
quence, a bias in nucleotide composition may slow down or
accelerate the search process significantly, as has been reported
above: accessibility depends on the composition of the pool and
on mutations happening with different probability to each of the
nucleotides. On the other hand, one can assume that frequent
structures have neutral networks that are connected and that are
distributed relatively homogeneously across the sequence space,
such that accessing them is independent of composition and of
uneven mutation rates. The results presented above agree with
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other studies where the impact of nucleotide composition on the
structural repertoire has been studied in detail (Knight et al,,
2005; Kim et al., 2007).

Sequence length and evolvability: Since our work is based on the
computational determination of secondary structures and in silico
evolving RNA populations, we are limited in the sequence length
that we can consider. What effects can be expected in the case
of longer sequences? Obviously, the numbers of sequences and
structures increase, although the ratio of the size of the structure
space to the sequence space decreases. Furthermore, for longer
sequences, the fraction of sequences folding into common struc-
tures compared to rare structures becomes larger (Griiner et al.,
1996a). Therefore, we expect that the search time for a rare
structure increases compared to the search time for a common
structure. A very general feature of replicating populations is that
there exists a critical mutation rate above which the population
cannot maintain function. This critical mutation rate is closely
related to the sequence length: if selection acts upon the geno-
type, this threshold is inversely proportional to the length of the
sequence. If selection acts upon the phenotype, higher mutation
rates are allowed. In our simulations, this critical mutation rate is
given by the fixation threshold. Our results show that this fixation
threshold varies strongly with the structure and we clarified that
besides abundance in particular the number of base pairs and
composition of the random pool affect this threshold. It turns
out that common structures are not only easier to find, but
also withstand higher mutation rates and are therefore more
evolvable. Although our simulations were not aimed to explain
any specific scenario, the molecule length used here (n=35)
leads to critical error rates which are compatible with a recent
experimental study for non-enzymatic nucleic acid replication
(Rajamani et al., 2010).

Other folding landscapes: In this article, we used as phenotype
the RNA secondary structure as minimum free energy structure,
as predicted by the fold() routine of the Vienna RNA package
(see Methods). Our aim is not to perform an accurate prediction of
an RNA structure from a given sequence—a goal which should
also take into account tertiary interactions or, even in the realm
of secondary structure prediction, suboptimal structures, parti-
tion functions, or kinetic folding—but to obtain statistically
significant properties of the evolutionary search for a particular
phenotype. To our advantage, it has been shown that structure
statistics is relatively insensitive to the precise folding algorithm
used (Tacker et al., 1996). There, in particular the autocorrelation
function of structures, the existence and component structure of
the neutral network, and the shape space covering property were
shown to be basically independent of the folding algorithm and
its parameters. We hence expect that the qualitative behavior of
the average search time, computed from 200 independent reali-
zations from populations of size 500-10,000, is qualitatively
independent of the details of the folding algorithm. The investiga-
tion of a model of replicating RNA molecules where selection took
into account the suboptimal structures, has been carried out
by Ancel and Fontana (2000). The resulting plastic repertoire of
structures of a sequence contributes to the overall fitness of the
sequence in proportion to its weight in the Boltzmann distribu-
tion. As a result of selection, this repertoire becomes smaller, and
the reduction of this plasticity (repertoire of structures) goes hand
in hand with a loss of variability and hence loss of evolvability.
This is explained by the correlation of the set of attainable
(MFE plus suboptimal) structures of a given sequence with
the MFE structures of the genetic neighborhood of that sequence.
This statistical property of the RNA genotype-phenotype map is
responsible for an evolving population to approach areas of
sequence space with high neutrality. Our work agrees qualita-
tively with these findings, and furthermore shows that the loss of

evolvability is differential, i.e., depends on the structure used as
target of evolution and in particular on the composition of the
nucleotide pool and the structural motifs.

Fitness landscapes: Using RNA secondary structures as target of
evolution, the fitness landscape is rough and its properties can be
characterized in terms of autocorrelation functions (Fontana et al.,
1991, 1993; Stadler, 1999). For the model studied by Ancel and
Fontana (2000), results were reported to be robust with respect to
changes in the functional form (hyperbolic, exponential, linear) of
the fitness function. Here, we apply an exponential fitness func-
tion, which is believed to be more realistic than fitness functions
varying linearly with the structural distance (Bonhoeffer et al.,
1993). This fitness function is rather general since it includes as
limit cases the situation where all structures have identical fitness
(f=0) and that where only the target structure has non-zero
fitness (ff—o0). Considering a wide range of different secondary
structures as target structures, and varying selective pressures
and selection algorithms, we have studied the effect of different
fitness landscapes on the evolutionary dynamics.

Outlook: The results for our evolutionary model show that the
search for a common structure, and hence of its associated
chemical function, is much more efficient (faster) and reliable
(in a wider range of mutation rates) than the search for a rare
structure. Eventually, we would like to establish a correspon-
dence between a set of sequences and the chemical functions they
can perform. In the same way that the sequence-structure map
offers a huge number of sequence solutions for a fixed structure, it
might be that the structure-function map is redundant to the
point of permitting common structures (maybe with additional
requirements, as bearing particular sequences or having low
folding energy) to perform “rare” functions. If this is so, the
appearance of simple RNA motifs in natural, functional molecules
(such as reported in Gan et al., 2003; Cowperthwaite et al., 2008),
would not be just a contingent fact due to their high frequency in
random pools, but a consequence of the complete sequence-
structure-function relationship. This is just a hypothesis to keep
in mind, since the relation between molecular structure and
chemical function (which is the actual phenotype of a molecule)
is an open field of study. Two counteracting forces are present:
the greater abundance and evolvability of common structures
versus the possibly better performance of some specific rare
structure.

The relationship among nucleotide composition, structural
motifs, and size and connectedness of neutral networks appears
as a subject deserving further research. Advances in these areas
might have potential applications to in vitro evolution of short
sequences (ribozymes, RNA and DNA aptamers, or other poly-
meric ligands) and, in the context above, to start disentangle the
relationship between the genomic restrictions of a given pheno-
type and its evolutionary attainability.

10. Methods

Simulations have been carried out at the Itanium II cluster of
INTA (Instituto Nacional de Técnica Aeroespacial, Spain). For
random number generation, we relied on the Mersenne Twister
algorithm as provided by GNU Scientific Library (GSL), Version 1.7
(see http://www.gnu.org/software/gsl). For secondary structure
folding (minimum free energy) and calculation of base-pair and
Hamming distances, we use the Vienna RNA package (Hofacker
et al., 1994), Version 1.5, with the current standard parameter set
and allowing for A-U, G-C, and G-U base pairs, and the formation
of isolated base pairs. The list of secondary structures used as
target structures can be obtained from the authors (besides those
given in Table 1).
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The search (fixation) times are determined as average values
over R=200 (R=20) independent simulations (only in Fig. 4 for
R=100). For reasons of clarity, standard deviations are given as
error bars in Figs. 2, 3 and 6 only. In Fig. 5 we show average search
times obtained for various structures. For each structure, the
average was obtained individually as above (R=200), and then
average over structures was performed. The error bars there
indicate the standard deviation over the ensemble of structures.
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