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Self-similarity in rain forests: Evidence for a critical state
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A cellular automata model of forest growth (the forest game) is shown to be able to reproduce the
whole set of data available from a real rain forest where multifractality is present. It is conjectured that
these fractal properties would be related with a self-organized critical state.
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Fractal structures are ubiquitous in nature. Such struc-
tures exhibit self-similarity over a wide range of spatial
and temporal scales, and their ubiquity suggests that the
mechanisms implicit in their generation are robust and
independent of the detailed physics involved. This obser-
vation led Bak, Tang, and Wisenfeld [1] to propose the
theory of self-organized criticality (SOC). They explain
that critical states are behind these spatiotemporal pat-
terns and that such critical points are naturally reached
with no external tuning of parameters. These states have
been identified in physical systems [2] and in some com-
plex biosystems as well as in evolutionary processes
[3-5], but in the latter, experimental evidence is often
difficult to obtain.

In order to test the theoretical predictions of SOC
theory, we need to (1) identify in natural systems those
properties characteristic of critical states and (2) con-
struct simple (minimal) models able to reproduce such
structures. In this paper both points are analyzed in rela-
tion to one of the most complex biosystems known, a rain
forest.

In Fig. 1(a) a 50-ha (1 a = 10> m?,1 ha=10* m?) digi-
tized map of Barro Colorado Island (BCI) rain forest is
shown [6]. We have a 200X 100 grid where N,=2582
low canopy survey points (LCP’s) are plotted as black
dots. They indicate that the height of the canopy was
<10 m (the typical height is =50 m). These low canopy
points are linked with the recent formation of a gap, due
to treefall. (Figure 2, discussed later, shows a plot of gap
sizes.) Such dynamical phenomena have been shown to

be very important in the maintenance of high diversity
levels [7].

We first estimate the fractal dimension D, of our sys-
tem Q (the BCI forest). If M(r) is the number of LCP’s
in an L X L square, we expect a scaling behavior in densi-
ty as p=M(L)/L:~L "°. In BCI, D,=1.85 for
L <L.~60 m, and for L >>L_ a trivial scaling with a
slope equal to 2 is obtained. Using box counting ) was
partitioned into /X! boxes (1= =20 pixel units), and
two different scales were observed: S;={5<r <30 m}
and S,={30<r<60m}. For S, we have slopes
dy, =1.8610.05 and d,; =1.4610.06 for S;. A continu-
ous drift is observed between both linear scalings. This
result is confirmed by means of the correlation function
C(r), defined as

C(r)=—11\72p(r)p(r+r') , (1

(here r=|r—r'|) where p(r)=1 for a black site, and O
otherwise. For a two-dimensional fractal object, we have
C(r)=r~Y where v=2—D, and in our system we have
v;=~0.68+0.02 for r €S, and v,~0.211£0.04 for r€S,
as expected. Two characteristic length scales are then
observed [8] [Fig. 3(a)].

Now in order to characterize multifractality [9], a mea-
sure u needs to be defined on our system €. The total
size of Q is partitioned into a set {B;} of pieces of length
1, and a probability measure p; is assigned to every piece
(i.e., p;= f Bid,u). For our system, we take the fraction of
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FIG. 1. (A) 1000X500 m snapshot of the
BCI rain forest (Panama), showing LCP’s as
black dots; (B) f(a) spectrum for BCI and a
100X 100 FG simulation; here P,=0.5,
P;=0.013, and y=2.5.
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FIG. 2. Power-law distribution of gap sizes from BCI forest
(dashed line) and FG (five 200 X 100 samples were used; parame-
ters as in Fig. 1).

LCP’s N, inside B, i.e., p;=N;/N,. If Q is multifractal,
it can be described as Q= U ,Q,, where {Q,} are subsets
with scaling p; =1%

Following standard methods [9], the generalized di-
mensions can be estimated. Using the g-order moments
M,(Q)=3,;P!, Q will be a multifractal if the scaling
Mq(ﬂ)zl_”‘” holds. The Legendre transform f(a) of
7(q) gives us a universal characterization of our system
[9], and is shown in Fig. 1(b). As usual, we have
alq)=39,[(g—1)D,] and

fla)=q(a)—[gqla)—=1]D,,) - (2)

The fractal patterns that have been found in BCI may
be a fingerprint of a system in a critical state. In such a
case, a power-law distribution of gap sizes [G(s)] is ex-
pected to occur (like avalanche sizes in sandpiles). For
the BCI forest, we found that G(s)=~s ¥ with
¥=2.011£0.24. (See Fig. 2.)

Our results strongly suggest the possibility that BCI
might be a snapshot of an ecosystem poised at a critical
state. In fact, the BCI study was mainly motivated by the
problem of how rain forests are organized in space and
time. The theoretical prediction [10] is that they are sys-
tems in a nonequilibrium state. The previous results
seem to confirm that such a nonequilibrium (critical)
state should be present. In order to see if SOC is involved
as the mechanism underlying the fractal structure of BCI,
a cellular automata (CA) model—the forest game—(FG)
[11] was used.

Here a two-dimensional L X L lattice A(L) is used, on
which trees grow and compete for resources (periodic
boundaries are used). The size of each tree is specified at
a given time step ¢ by S,(i,j), where (i,j)EA(L). As in
other models [12] the value of S,(i,) can be a real num-
ber instead of belonging to a discrete set of states. In our
CA model, we replace the 186 different tree species
known in BCI [6] by a single type of tree. Here each
point is a 5X5 m square in the BCI plot. Four basic
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FIG. 3. (A) C(r) for the BCI forest; (B) C(r) for the FG au-
tomaton (parameters as in Fig. 1), averaged over ten 200X 100
simulations.

rules are defined (and asynchronously applied). (a) Birth:
a new tree can appear at any empty lattice site with prob-
ability P,. The size of the newborn tree is the minimum
one S,. (Here S;=0.1.) (b) Death: a tree will be re-
moved according to a probability P, but also if S, =S, a
maximum size. (c) Growth: tree sizes are updated ac-
cording to

S +1(5,)=8,0;,j)+ O
(rs)

1—3;— S S,(r,s)J 3)

(here y gives the interaction strength and {r,s) stands
for the eight nearest neighbors). Here ©(z)=z if z>0,
and ©(z)=0 if z <O0: if the screening is too high, growing
is not allowed. As we can see, the rule is linear except for
the threshold. (d) Gap formation: when a tree dies, a gap
in the canopy is formed. Not only is the dead tree re-
moved, but also all the nearest neighbors S, (r,s) in a cir-
cle B(R) of radius R such that 3 pg)S;(r,5)=S,(i])).
The mass of neighbors removed is then proportional to
the size of the falling tree, and at most equal to it. R is
determined through the previous inequality. In our mod-
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FIG. 4. Parameter space of the FG automaton, calculated
from 100X 100 lattices (P, =0.5). Here CF = complex forest.

el LCP’s are those where S,(i,j)=0. Starting from a ran-

dom initial condition [some trees of size S, are randomly .

scattered over A(L)], the system evolves to a steady state
where all statistical quantities become stationary after
t>75-100 steps. We have used lattice sizes up to
L =256, but most calculations were performed using
L =100.

The phase space of our CA is shown in Fig. 4, for
different (y,P;) values and [13] P,=0.5. For all these
points the f(a) spectrum was calculated as well as C(r),
G (s), and other quantities of interest such as the Fourier
spectrum S(f) of biomass fluctuations, i.e., of
B(Q,t)=3; »S,(i,j) and the distribution of tree sizes
N(S) [14]. The following three main domains are ob-
served.

(1) Damped oscillations. For P;,y <<1, screening is al-
most absent and the forest is highly synchronized, with
strong damped fluctuations in biomass, small correlations
and well defined peaks [15] in S (f); the period of oscilla-
tion 7 is shown to scale with S, as r=S, “ with k= 1.

(2) Random forest. For P;—1, the forest dynamics

BRIEF REPORTS 51

behaves as white noise and Dy=2. When y —0, we ob-
serve a canonical distribution of tree sizes, i.e.,
N(T)=exp(—T/T*) where T*=(T). Hence C(r) is
constant, i.e., no correlations are observed.

(3) Complex forest. This domain is the most interest-
ing one. A snapshot of the FG (at ¢=150) for
Q*=(P;y=0.013, y*=2.5) is shown in Fig. 5. In this
domain all the observed properties of the BCI system (in
particular for Q*) are very well reproduced: (i) C(r)
shows the same two characteristic length scales, as shown
in Fig. 3; here we have v;=0.66+0.03 and
v,=~0.19%0.05 for Q* and L, =60 m; (ii) G(s) also shows
a power-law behavior with ¥~2.00x0.10 (Fig. 2); (iii)
tree sizes show a scaling N (S)=S 7 with n~=1.00%0.02
(this value is not available for BCI), and (iv) the fractal di-
mension is Dy~ 1.87%0.05 with a very good agreement
in f(a) as shown in Fig. 1(b). An additional quantity
(not available from BCI data) is the temporal behavior of
B(Q,1). The Fourier spectrum shows f ~# noise for a
wide region of parameter space around the complex
forest (CF) domain, but the largest 3 are obtained only in
this domain. The CF region is formed by those systems
closer to 1/f noise, more precisely those where 8>0.9.
For Q* we have 8=1.00.

The white area around the CF shows intermediate
properties, in particular for P; <<1 and high y, the forest
dynamics becomes ‘““frozen,” very short correlations are
present, and anomalous (nondecreasing) distributions of
N (S) and G (s) are obtained.

In summary, we have shown that the BCI forest is a
multifractal and that a simple CA model can account
for a very important piece of rain forest complexity,
the spatial structure of forest gaps. A typical value of
tree death rates obtained from field studies [15] gives
P,;~0.01-0.02, which belongs to the parameter domain
where the complex forest is seen. A very broad interval
of v values is involved, suggesting that the CF should be
the generic behavior of real rain forests, as expected in
SOC theory.

As previous mentioned, gaps are known to be a source
of diversity in rain forests [7,10]. For a long time, it has
been conjectured that some kind of nonequilibrium dy-
namics is behind the enormous diversity of these ecosys-
tems [10]. The FG model provides a quantitative frame-
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. FIG. 5. A 200X 100 snapshot of the FG au-
# | tomaton, for (PF,y*), at t=150.
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work able to give a nontrivial relationship between diver-
sity and critical states [16,17]. In this sense the BCI rain
forest could be an example of a complex biosystem poised
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