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Criticality and unpredictability in macroevolution
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A recently presented model of large-scale evolution exhibiting self-organized criticality is explored from the
dynamical point of view. It is shown that the system approaches the critical state in an anomalous way, with
a dynamical exponerg=0. At the same time, the complexity of the interactions among species increases,
leading to higher unpredictability. The dynamic evolution is able to generate phylogenetic fractal trees with
dimension close to the one obtained from real taxonomy. Some analytic results are presented and an interesting
interpretation of the macroevolutionary process is suggep8d63-651X%97)15503-9

PACS numbdrs): 87.10+e, 05.40+j, 64.60.Lx

[. INTRODUCTION nonzero entries in the matrixaf; = d;f;), and if o? is the
variance of such matrix elements, it can be shé8jrthat the
Macroevolution, as a nonequilibrium dynamical processprobability P(N,C,o) that the system is stable will be such
has received considerable attention in recent studied].  that
Based on simple models, the overall pattern of evolution has

been suggested to be the result of a self-organized critical P(N,C,0)—1 if oNC<1,
procesg5]. Recent results based on the analysis of the fossil
record seem to be consistent with this conjectie The P(N,C,0)—0 if oy/NC>1, 3

underlying problem comes from the interaction of speties

other taxonomic unisin a complex ecosystem. Classically, i.e., we have a sharp phase transition brso. This is an

ecological theory has been based on the well-known Lotkainteresting example of a sudden qualitative change of behav-

Volterra equation$7,8] ior in complex ecosystems when a given parameter is varied.
Though total randomness in the choice of the couplings

n N neglects those links which are intrinsic to the system as a
dar fi(n)=n; Ei_lzl vy |, i=1,... N, (1) realistic model ecosystem, other recent approaches based on
the simulation of multispecies communities also show strik-
with n=(ny, ... ny). The main properties of the system are INg, Sharp limits to diversity and stabilify.0,11.

Now a step must be introduced in order to move from
&cology to evolution. In a real ecosystem, changes in the

tions. Ecological theory deals with constdntmatrices, but SPecies phenotype are allowed and so the matrix of interac-

evolution implies changes in the interactions, so the previoudons IS in fact an evolving, time-dependent matrix. Most

approach becomes more complicated. A quantitative apt_heor_eucal stud|e§ deahng with coevolution usually only
proach to a general, arbitrarily wired many-species commuconsider two-species relations, where a prey and the corre-

nity is a challenge for theoretical ecolof§]. Though many sponding predataior parasit¢ evolve together. It is assumed

particular cases have been solved, involving special matrif1at some kind of “fitness” function can be defined which,
symmetries and/or directional trophic linkise., food chaing " the ideal case, is described by a single number. More
no general treatment has been obtained. ForNomemmu-  9enerally, we have to use the metaphor of “fitness land-

nities, many relevant exampldas the so-called replicator SC@Pe,” where many different traits are consideled Then,

networks[7]) have been solved. in order to improve their fitness, the two species evolve in
A classical result involving large¥, randomly wired eco- M€ and their connections become modified. .
systems, was obtained by May in 1972,9]. This study It is also assumed that those individuals with lower fithness

involved a statistical approach to dynamical systems, basedf? refation with the mean population fitngszre less able to
on the Wigner's semicircle law. Specifically, let us considerSUrvive and/or give offspring, and then natural selection re-
the linearized set of equations moves them from the system. This is, roughly speaking, con-

sistent with the Darwinian theory. If true, then the extrapo-

determined by the so-calledommunity matrix I'=(y;;),
whose elements give the strength and type of the intera

dy. N lation of the microscale (involving coevolution in
izz 3, F1(N) pr Y (2)  population$ to macroevolution would be a straightforward
at = 9 . step.
There is, however, a considerable debate about whether
close to the equilibrium poinP*=(n7,...,ny). Here, as microevolution is able to fully describe macroevolution

usual,y; represents the perturbation from the equilibrium[12,13. There are several problems, which involve, for ex-
value nJ?* in the neighborhood oP*. If C is the fraction of ample, the existence of external stressie15 linked with
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FIG. 2. Temporal variation of the Boltzmann entropi(t).
WhenH (t) —H,,=In(2), extinctions are triggered. The displayed
system has a sizd=200.

FIG. 1. Total number of families that went extinct from the
Cambrian(about 600 milion years agdo the present. The main
figure represents the power spectr(imare calculated as the Fourier
transform of the autocorrelation functipaf the series in the inset.
It is of the form P(f)ocf . microevolution able to reproduce and interpret these prop-

erties. This obviously does not mean that such a theory
abiotic causes. But other intrinsic phenomena can play a veryrould not be possible. But, in principle, it would be ex-
important role, as the existence of unavoidable higher-ordeiremely complicated, as far as a large set of equations involv-
interactions(i.e., trophic relations involving several levgls ing populations together with equations for parameter selec-
which make network ecosystems highly unpredictable ortion would be necessary.
large time scales. Though direct two-species interactions can There is, however, an alternative approach based on the
be sometimes analytically explored, eventually leading tcso-called self-organized critical phenomer&]. Self-
predictions consistent with natural selection, many examplesrganized criticality(SOQ refers to the tendency of large
from real ecosystems show us that this is not the case. Adynamical systems to evolapontaneouslyoward a critical
N-species interactions are taken into account, the existenc#ate typically characterized by spatial and temporal self-
of multiple attractors and the unpredictable nature of highersimilarity. One of the conjectured applications of SOC
order interactions makes intrinsic dynamics much more reltheory was precisely the dynamics of large-scale evolution
evant than natural selection in the long furg]. [1-4]. The underlying idea is to identify simple, but biologi-

Additionally, theories on macroevolution must be able tocally consistent mechanisms able to drive the system toward
say something quantitativeind so testabjeconcerning the a critical state. At such a state, some of the observed scale-
statistical properties observed in the fossil record. Roughlyfree properties would be naturally obtainéthe opposite,
the following observations have been made. however, is not true: power laws can be obtained in noncriti-

(1) The extinction pattern of speciger families or other ~ cal systemg[15]). Additionally, universal behavior is ex-
taxonomic unit is clearly punctuated. Long intervals of pected, and so no detailed set of rules is necessary.
time show low extinction rates, but from time to time a sharp  In this paper we explore a previously introdud&#,14,
rise in extinction levels is observeld4]. An example is Simple model of macroevolution which poises itself to a
shown in Fig. 1. The corresponding power spectf®f) is  critical state. In Sec. Il the model is briefly introduced, and a
also shown, with a power-law behavior, i.@(f)f £, In  firstimportant property, i.e., the evolution toward highly un-
this example and others analyzed in the fossil red6idt  predictable states, is described. It is conjectured that such an

has been found that very oftegr=1. unpredictable state makes macroevolution essentially de-
(2) The distribution of extinctionl(m) of sizem follows  couple from microevolution, as early suggested by some pa-
a power-law decay wittN(m)em™* with a~2 [6,15]. leontologists[13]. In Sec. Ill some analytic results are de-

(3) The lifetime distribution of family and genera dura- rived, and in Sec. IV the existence of a fractal taxonomy, an
tions N(t) follows a power-law decay(t)oct™* of k~2 emergent property of our system, is described. In Sec. V we
[17]. outline some of the implications. An interesting interpreta-

(4) The statistic structure of taxonomic systems alsation of macroevolution, as a dynamical process, is intro-
shows fractal properties. For example, the number of gener@uced.
formed byS speciesNy(S), follow a power-law distribution
with Ng(S)=S™ > with a,~2 [18].

(5) A study of the rates at which different groups of or-
ganisms go extinct through time shows that a species might Recently, the authors introduced a simple self-organized
disappear at any time, irrespective of how long it has alreadynodel of macroevolutio3,4,16. In that model, the inter-
existed. This result, first reported by Leigh Van Vald®]  action among species is introduced by means of a connectiv-
strongly modified the ecological view of macroevolution. ity matrix J=(J;;), and evolution is represented through

These five observations should be explained by any corshanges in its elements. A set bf species which can be
sistent theory of macroevolution. As far as we know, there iound in a states; € {0,1} is considered. The elements are
no theory, based on classical population geneties, on allowed to take real values in the intenjat 1,1], and the

II. EVOLUTION MODEL
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FIG. 4. Variation of the average probability of finding a positive
connection just before and just after an event of siziakes place.
The entropy always decreases after the extinction event and the
replacement have taken place. The plots were calculated for a sys-
tem of sizeN=100 and have been averaged fer10° time steps
after a transient was discarded. In the inset, we show the depen-
N dence of the entropy on system size for the minimal extinction, that
is m=1. This minimal extinction is considered to be the one that
Si(t+ 1):(13( Z Jij(t)sj(t)) (4 may trigger an avalanche of extinctions. As can be seen, the un-
=t stable maximal valuéd,,,=In(2) has to be reached in the limit

. . . . N—o in order to start a chain of extinctions.
where the functionb (z) =1 if z>0 and zero otherwise. This -

last equation can be understood as the discrete counterpart®kituation where the local field of the species has increased,
Eq. (1), but involving a much larger time scale. The model isand thus becomes situated further from the extinction thresh-
updated in three steps, as follows. old, leading to a more stable state. In this case, a close ex-
(i) Random changes in the connectivity matrix. Each timetinction event is not very likely. On the other hand, simply
step we pick up one input connection for each species angy chance, we could have chosen an ancestor with a low
assign to it a value drawn from the uniform distribution |ocal field (even negative In this second case, the new spe-
py(w) =3 in the interval[ - 1,1], without regard to the pre- cies and the remaining ones will be proner to extinction, and
vious State of the connection. a larger event may take place. This might start a chain of

(i) The local fields are computed;(t) ==;J;;(t)S;(t). If  avalanches, a domino effect that eventually may lead to a
some of these fields fall below zero, let us say forlarge mass extinction.

FIG. 3. Numerical(symbolg and analytical(continuous ling¢
values of the entropy(t) for three different system sizes. The
initial condition has been numerically fixed.

state of each species is updated according to

e=1,...m, the set of connections Jo;=J;c=0 The described effect can be quantitatively measured in the
(Vj, e=1,...m), synchronously. An extinction of siz&  following way. The random changes in the connectivity ma-
has taken place. trix [rule (i)] make the trophic links among species more and

(iii) Diversification. One of the alive speciess = more complex. This complexity can be simply quantified by
e{m+1,... N} is chosen at random, and its connectionsmeans of a statistical measure. We will first consider the time
are copied to the extinct oned;;=J,j, Jje=Jja, andVj. evolution of connections. In the most general case, we can

In our previous papef4], it was shown that the system consider the (time dependent continuous distribution
evolves to a critical state with power laws in the extinctionf(J,t) of connections. For simplicity, however, we will re-
sizes[ N(m)eem™ ¢, with a~2] [20], and waiting times until  strict ourselves to a more simple formal approach according
extinction, which reflect the well-known punctuated to which we just keep track of the sign of the connections.
equilibium behavior displayed by real macroevolutid2]. Most of the results are basically equivalent in both ap-
In this paper we have analyzed the model in orddfjdhave  proaches. Besides, in many real situations, the structure of
a better characterization of the intrinsic dynamics, #é8d the connectivity matrix in a given ecosystem is limited to the
interpret the observed behavior in evolutionary terms. Allknowledge of the signs of the cross interactig@g]. Let
our extinction events start with a single or a few extinctP(J*,t) and P(J ,t)=1—P(J*,t) be the probability of
species in the first time step. In following instants of time, positive and negative connections at timeespectively. The
the removal of connections and the replacement of the exime evolution ofP(J*,t) is defined by the master equation
tinct species may have two very different effects on the re- SPI*D)
maining species of the system. Sometimes, if the species that _ - 1+ + + -
we cho%sep to replace the extinct ones has an average value of gt =PE0p(T=J7)=PUTOPIT=J7).
connections above the average of the system, we will obtain 5)
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From rule(i), we have a transition rate per unit time given by
p(J-—=J")=p("—J7)=(2N) 1, and we obtain an expo-
nential relaxation

Connections entropy
q e Probability of positive connections

P(I*",H=3{1+(2po—1)e” "}, (6)

where we have the initial conditid®(J*,0)=p,. This result
leads immediately to an exponential decay in the average
value ft=(Z,;%)/N of the local fields,frcexp(—t/N). The
temporal variablef  acts as a control parameter in our sys- 1 —
tem[4]. This exponential time dependence gives a constant ]
largest decay mode=1 instead of the usual critical slowing
down approach where= & (¢ is the correlation length of

the system and is the dynamical exponent associated to the
critical slowing down; se¢22] for more details We find
z=0, which indicates an anomalous approach to the critical ] {\ M‘N
state that has also been observed in a mean-field approxima- 0.05 J [
tion of the Bak-Sneppe(BS) model[23]. We can compute ] /Jw QJ 1
the entropy of the connections, i.e., the Boltzmann entropy ] Bl L I wﬁ\ ﬁ ]\«w M f\m/\ M }J |
H(t): — P(‘]+,t)|n[P(J+,t)]—[1— P(‘]+,t)]|n[1— P(‘J+,t)]_ In %00, obo 5050 5100 “ stho | 5200 =
Fig. 2, we represent the temporal evolution of the entropy Fime

together with the extinction pattern, and in Fig. 3 the numeri- o N
cal and the analytical variations of the entropy are shown. FIG_. _5. Enlargement of the variation of entropy and probability
Recall that in the analytical calculation the zeros that migh! Positive connections when a burst of extinction events takes
be found after the extinction event are not taken into accounf!ace. The avalanche starts with a small extinction when the en-
This temporal evolution of the entropy has also been oblropy is close to its unstable value and in s‘(‘ame case,:s it is followed
served in Ray’s model tierra of artificial life evolutid@4]. by larger events. Here we can talk about “bad .IUCk because Fhe
The system slowly evolves to an “attractor” characterizedtemporal extent and the total amount of species that go extinct
by a randomly connected network. In this state, Srna”depend on the chance in the election of the species that is going to

h f st h I/ difv the si p d replace the extinct ones. In our system, we can observe preshocks to
changes of streng can modify the sign of r, and an large mass extinctions. The system always becomes more ordered

extinction event may take place. In the linit—, only after one such burst, as can be observed in the decrease of the

when the entropy is maximaH na,= —In(3)] is it possible entropy. The simulated system has sire 100.
to find the triggering extinction. The process of replacement

works against the increase of entropy, and introduces ordesut a power-law behavior of this quantity for small times
in the system by means of similar trophic links. A very in- (consistent with the observed lifetime distributicimgether
formative measure of the strength of the fluctuations in thevith a well-defined and wide exponential cutoff. This result
system is given by the representation of the average prolsuggests that perhaps the statistics available from the fossil
ability of positive (or negativé connections in the system record are not, at this level, complete enough to detect the
just before and just after an event of sinetakes place. Our power-law component, which nevertheless shall be present
results are represented in Fig. 4, together with the average the essentially exponential functions supporting the Red
entropy when an extinction of sizm=1 takes place as a Queen effect in order to make both results compatifid
function of system size. The maximum value of the entropyobservations 3 and)5

is required to start an extinction event, and this maximum

value is usually responsible for the extinction of one or just a 1. ANALYTIC RESULTS

few species. When this triggering extinction event takes ) ] .
place, the system has to reorganize to a more ordered struc- 1N stationary solution of the system can be characterized
ture far from the instability, and in some cases several conPY the distribution of connectiong(w)in the J matrix. Let
secutive extinctions are required before the avalanche stop$ call p(w,t) the probability of finding a connection of
and the system starts again to relax towards the criticayaluew at timet. Using a mean-field approximation, we can
threshold. These results are depicted in Fig. 5. As can b@rite in two steps the following master equation for this
seen, large extinctions can only be obtained after some stefgobability:

of “bad luck,” initiated by a small event. This first event can 1 1
pnly be obtained when the entropy4sin(2), and this value P(W,t+2)=p(w,t) — —p(W,t)+ =,
is further approached d@$— . The usual average output of N 2N
an extinction event is a more ordered system, with a de-

o(w+) and Entropy

Extinction rate

creased value of the entropy. p(W,t+1)=p(w,t+3) —kg(w,t+3)

The overall effect of the relaxation toward a random net- 1
work is a highly survival of species. As a consequence, in the n Wi+t —ka(w.t+ 2t 7
long run all species are equally likely to become extinct, as 1-#'0( tra)kqwit+z)], (@)

observed in the analysis of the fossil record. Let us mention, o
however, that a careful inspection of our simulations pointsvherek is the average probability of extinction, and we have
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1.00 the lowest local field, no extremal principle holds for the
] _ connections, for which the master equations are writB&h
1 o %;fgo The solution of Eq.(8) can be obtained exactly if we
3 1 weves N=200 consider just two values for the connectiodg=*1 (see
“\O%j V. [4]). In this case, botlg=q(1) andk can be computed as
© 1 AR follows: in the mean-field approximatiork is simply the
S 1 P probability of choosindN numbers from the matrix such that
= 050 - ot ; their sum(the local field is negative or zero. This means that
3 gt s we have to find a maximum quantity b2 1's in the set, so
L~ € % H P v
o MR N/2
R, 1 - M N—M
k= 1- , 9
025 - MEO(M)p (1-p) ©
where we have defined=p(1), andg can be written as
0.00 +———+—+7T——rT T
-10 —05 0.0 05 1.0 q=1%+ (F-) (10)
Connection value w 2N
o _ _ where we have defined
FIG. 6. Distributionp(w) for different system sizes. These have
been obtained by averaging over®lime steps snapshots taken N/2 N
every 100 time steps. The connections with zero value are not taken (F)= 2 (2M — N)( ) pM(l_ p)N—M (12)
into account. As can be seen, these distributions assymptotically M=0 M

approach the mean-field solutigriw) = % for N— oo, ) o
as the average value of the removed local fields. Substitution

definedq(w,t+2) to be the probability of removing a con- Of the last two expressions into the stationary solutign
nection of valuew from the matrix when an extinction of 9ives the following equation fop:
average sizen=Nk takes place. The first equation simply N/2

considers the random change in the interactiooke (i)]: a N E N M(1—p)N-M E+ i F = E
s : > . p¥(1-p) (F-)

valuew will disappear with probabilityp(w,t)/N and will M=o \ M 2 2N 2

appear with probability 1/R. The second equation takes into P~ N72 '

account the removal of connections due to extinctgectond N, ( ) pM(1—p)N"M-1

term) and the introduction of additional connections through M=0 \M 2

diversification(third term). The fact that we cannot directly
evaluate the probability distribution of removed connectionswhiCh has the mean-field solutign=1. As can be seen, the
. . . _ = 2+ )

makes the analytical treatement of_the .model s||ght|y.d|ffer exact solution for the master equation requires the evaluation
ent from other mean-field _apprOX|mat|.0ns_to evolu.t|ona.1ryof the distribution displayed by the removed connections
P;cr)r?()e\lisn[z%ﬁlqéocrl)rl:;c?gr?:-:f lrin?j%egoﬁgnn?t;ﬁg Cmoantfiftsa:é taking into account the criterium over its sum. It could be
addin t?le new ones iust by bicking uo randoml the’ sam calculated explicitly in the discrete case, and the continuum

9 J yp 9 up y Qase has been extrapolated from that one, and verified to

numl_)er .Of connt_ectlons_"from the remaining ones, WIthOUtfulfiII the equations and to approach the theoretical solution
considering that in rulgiii) the copied connections all be- .
L : . numerically.
long to the same species: we get rid of the correlations. We
further consider the average extinction r&ténstead ofk,
which would be time dependent. The stationary solution of IV. FRACTAL TAXONOMY
Eq. (7) reads In the history of evolution, natural parental links among
_ _ different species naturally appear as a result of mutation and
(Nk—1)p(w) —Nkg(w)+3=0. (8)  diversification from an ancestral group. The relationship
among species is usually represented by means of a phylo-
This equation is formally identical to the one obtained for thegenetic tree, where the moment of splitting of a new species
stationary probability distribution of fitnesses in the BSfrom an old one is represented in an axis of a two-
model[see Eq.(5) in Ref.[23]]. Equation(8) has the solu- dimensional plot, togetheéusually with a “distance” to this
tion p(w)=q(w)=3. In Fig. 6, we represent the numerically species in another axis, which intends to account for the
obtained distributiorp(w) for different system sizebl. As  degree of initial taxonomic separation. There is some contro-
can be seen, the mean-field solutjpfw) =1/2 is asymptoti-  versy about the goodness of the classification of species into
cally approached all—«. The BS model, or the variation genera, genera into families, and so (@he so-called tax-
introduced by Roberts and NewmE2b], both have uniform onomy). Nevertheless, recent studies about phylogenetic
distributions for fitnesses above a certain self-organizedrees at different taxonomic levelgeneration of new spe-
threshold. This threshold comes from the explicit definitioncies, new genera, new families, new clades) steggest that
of extremal dynamics. In our case, although in some sensthere might be some kind of universality in those trees inde-
the dynamical rules lead to the removal of the species witlpendent from the taxonomers point of vi¢h8]. That is, it
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V. SUMMARY AND DISCUSSION
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eeeee N=50 We have analyzed a model of large-scale evolution that,
eeece N=100 though simple, keeps some relevant traits of the real process,
and is able to quantitatively recover the main observations of
macroevolution. These include punctuated equilibrium,
power laws in the distribution of extinction events, and life-
times of species, fractal taxonomy, and a rate of disappear-
* ance independent of species age. In particular, the obtained
value for the distribution of extinctions;~2, is very close

-

o
@
L

o

Absolute number of trees
=)

10 | . to the exponent extracted from the fossil recdtd| and also
10 e e near the value obtained by Roberts and Newrf2fl. In
07 Number of Splgc,ies in the tree ° their paper, these authors modify the BS model in order to

take into acount the influence of environmental factors. They

FIG. 7. Distribution of phylogenetic tree sizes. The size of atreeintroduce an external coherent noise that forces the simulta-

is defined as the total number of branches it possesses or the tof3@0Us extinction of all the species below some randomly
number of species that originate from the first ancestor. Abouchosen threshold. A different model that simply relies on
10’ time steps are required to give the shown distributions. Theexternal stresses, without any mechanism to make the spe-
continous line has a slope ef3. In the inset, a tree from a system cies interact directly, was introduced later by Newnha§].
of size N=50 is shown. The vertical axes represent time and theThe approach is, however, the same: it is the external influ-
horizontal axes the species. When a speciation event takes placgace and not the self-organization that causes the extinction.
the new born species is linked to the ancestor with a dotted lineyy this |ast model, the coherent effect that makes a certain
The I_ength of the vertical lines represents the lifetime of each of thg 5ction of species become simultaneously extinct is even
Species. clearer than in the model with the BS mechanism. In our
model we also have a large coherent effect due to the process

may be that the grouping of subtaxa within a higher taxa iof species replacement, which is able to generate a large
not an artificial human ordering, but the result of the verymass extinction when a species with a low local field is cho-
process of evolution. On the other hand, if self-similarity insen to replace the extinct ones: it is very likely to have large
taxonomy holds, this would be an independent support to thedomains in the] matrix with essentially the same number
conjecture that real macroevolution is operating close to &which also justifies the one-dimensional approach to the
self-organized critical point. problem; sed?28]). It is quite clear that Roberts and New-

The dynamical rules that define our model naturally poiseman’s model, Newman’s model, and ours all include a fea-
the system to a critical state. In this critical state, a propertyture, coherence, that seems to be essential to recover the right
of real taxonomy is recovered: the system generates fractalxponent for extinction sizes. In our case, all the exponents
phylogenetic trees, as has been observed by Burlgb8lo  are clearly robust under many different definitions of the
The value of the critical exponent, that defines the precise rules of the model, as far as the effects of drift toward
“branching” of species into others is the same as our expothe extinction threshold and coherence are maintained. These
nent for the extinction sizesy=a,~2, and is very close to two characteristics might define a universality class, prob-
the exponent obtained from real ddt8]. This result is a ably able to describe real macroevolution. The main theoret-
direct output of our third rule, replacement of extinct speciesjcal consequence of our model is that macroevolution can be
provided we chose a single species to act as the ancestor ioterpreted in an interesting way. Species interact through
all the new ones. This result, however, can be extended tohanging couplings. Though two given species directly con-
the case of choosing species at random to replace the extingécted can be understood in terms of classical two-species
ones, and the value of the exponent remains unchanged. coevolution, higher-ordefindirec couplings can trigger

We have also measured the distribution of the number oémall extinction events which, eventually, may lead to mass
species that at any time have belonged to a given tree. Thisxtinctions. In this context, the unpredictable nature of these
means that we sum over all the time that at least one specid@steractions cannot fit into the classical theory. This model
phylogenetically linked to the first ancestor is alive. In ordercould be used as a theoretical framework for the old conjec-
to do so, we pick at random one species from the system andre of an intrinsic separation between microevolution and
count the total number of species that have appeared as deracroevolutionf12,13.
scendents from this first one. This is the size of our see Finally, we should mention that our model could be an
The distribution isD(s) ~#, with 8~3. In Fig. 7 we dis- interesting approach to other complex systems with an
play the distributionD(s) for different system sizes and an evolving network structure. Economic networks, in particu-
example of a phylogenetic tree. Some other models have aldar, have been widely explored as complex adaptive systems
considered this generation of trees. In this context, Vande-29,30. In these networks, agents are coupled through evolv-
walle and Ausloog27] have obtained phylogenetic trees ing interactions. Noise in their couplings arises in several
with a fractal dimension depending on a certain parameter ofvays. In real life, agents are not always able to process per-
their model, and Newmahl5] was also able to define a fectly information about the systefthe networl in which
taxonomy in a system driven by random external outputs anthey are embedded. Adaptive agents continuously switch
obtain an exponent compatible with a power-law distributiontheir behavior as a consequence of changes in their expecta-
of exponent 2. tions [30]. At the same time that agents are continuously
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evolving, the couplings among them evolve in rather com-ecosystemg32]. In our model, the system spontaneously
plicated ways. The consideration of agefws whole mar-  evolves to a highly diverse network of connections, linked
ket with limited rationality will introduce changes in the with the onset of instabilities. Finally, recent studigg3]
couplings that may not always represent the best manag&ave revealed that markets display fractal structures in their
ment of the resources. This situation leads to small, randoriitternal organization. Interestingly, our fractal taxonomy is
changes similar to those introduced by our r@b Several the O.thome of a Self-Organized critical SyStem with no Chat'
models of market dynamics have shown tte in the real acteristic time scales. Perhaps the observ_ed_ fractal properties
economy punctuated equilibrium is often observédd]. of markets can be generated through a similar process.
Additionally, theoretical studies of generic mathematical
models of market dynamics clearly show that, as couplings
among stable markets grow, the likelihood of instabilities The authors would like to thank S. Kauffman, P. Bak, J.
also increases, leading to a loss of the general equilibrium, @88ascompte, M. Benton, B. Goodwin, S. Maslov, and M. Pac-
the system becomes increasingly diverse. The stability propeuski for useful comments. This work was supported by
erties of these generic market models have been shown @rant No. DGYCIT PB94-1195. R.V.S. thanks the Santa Fe
apply not only to this specific case, but also to complexinstitute for economic support.
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