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Criticality and unpredictability in macroevolution
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A recently presented model of large-scale evolution exhibiting self-organized criticality is explored from the
dynamical point of view. It is shown that the system approaches the critical state in an anomalous way, with
a dynamical exponentz50. At the same time, the complexity of the interactions among species increases,
leading to higher unpredictability. The dynamic evolution is able to generate phylogenetic fractal trees with
dimension close to the one obtained from real taxonomy. Some analytic results are presented and an interesting
interpretation of the macroevolutionary process is suggested.@S1063-651X~97!15503-9#
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I. INTRODUCTION

Macroevolution, as a nonequilibrium dynamical proce
has received considerable attention in recent studies@1–4#.
Based on simple models, the overall pattern of evolution
been suggested to be the result of a self-organized cri
process@5#. Recent results based on the analysis of the fo
record seem to be consistent with this conjecture@6#. The
underlying problem comes from the interaction of species~or
other taxonomic units! in a complex ecosystem. Classicall
ecological theory has been based on the well-known Lo
Volterra equations@7,8#

dni
dt

5 f i~n!5niS e i2(
j51

N

g i j ~ t !nj~ t !D , i51, . . . ,N, ~1!

with n[(n1 , . . . ,nN). The main properties of the system a
determined by the so-calledcommunity matrix, G5(g i j ),
whose elements give the strength and type of the inte
tions. Ecological theory deals with constantG matrices, but
evolution implies changes in the interactions, so the previ
approach becomes more complicated. A quantitative
proach to a general, arbitrarily wired many-species comm
nity is a challenge for theoretical ecology@8#. Though many
particular cases have been solved, involving special ma
symmetries and/or directional trophic links~i.e., food chains!
no general treatment has been obtained. For low-N commu-
nities, many relevant examples~as the so-called replicato
networks@7#! have been solved.

A classical result involving large-N, randomly wired eco-
systems, was obtained by May in 1972@8,9#. This study
involved a statistical approach to dynamical systems, ba
on the Wigner’s semicircle law. Specifically, let us consid
the linearized set of equations

dyi
dt

5(
j51

N

]xj f i~n!P* yj ~2!

close to the equilibrium pointP*[(n1* , . . . ,nN* ). Here, as
usual, yj represents the perturbation from the equilibriu
valuenj* in the neighborhood ofP* . If C is the fraction of
551063-651X/97/55~4!/4500~8!/$10.00
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nonzero entries in the matrix (ai j5] j f i), and if s2 is the
variance of such matrix elements, it can be shown@8# that the
probabilityP(N,C,s) that the system is stable will be suc
that

P~N,C,s!→1 if sANC,1,

P~N,C,s!→0 if sANC.1, ~3!

i.e., we have a sharp phase transition forN→`. This is an
interesting example of a sudden qualitative change of beh
ior in complex ecosystems when a given parameter is var

Though total randomness in the choice of the couplin
neglects those links which are intrinsic to the system a
realistic model ecosystem, other recent approaches base
the simulation of multispecies communities also show str
ing, sharp limits to diversity and stability@10,11#.

Now a step must be introduced in order to move fro
ecology to evolution. In a real ecosystem, changes in
species phenotype are allowed and so the matrix of inte
tions is in fact an evolving, time-dependent matrix. Mo
theoretical studies dealing with coevolution usually on
consider two-species relations, where a prey and the co
sponding predator~or parasite! evolve together. It is assume
that some kind of ‘‘fitness’’ function can be defined whic
in the ideal case, is described by a single number. M
generally, we have to use the metaphor of ‘‘fitness lan
scape,’’ where many different traits are considered@1#. Then,
in order to improve their fitness, the two species evolve
time and their connections become modified.

It is also assumed that those individuals with lower fitne
~in relation with the mean population fitness! are less able to
survive and/or give offspring, and then natural selection
moves them from the system. This is, roughly speaking, c
sistent with the Darwinian theory. If true, then the extrap
lation of the microscale ~involving coevolution in
populations! to macroevolution would be a straightforwar
step.

There is, however, a considerable debate about whe
microevolution is able to fully describe macroevolutio
@12,13#. There are several problems, which involve, for e
ample, the existence of external stresses@14,15# linked with
4500 © 1997 The American Physical Society
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55 4501CRITICALITY AND UNPREDICTABILITY I N . . .
abiotic causes. But other intrinsic phenomena can play a v
important role, as the existence of unavoidable higher-or
interactions~i.e., trophic relations involving several levels!
which make network ecosystems highly unpredictable
large time scales. Though direct two-species interactions
be sometimes analytically explored, eventually leading
predictions consistent with natural selection, many examp
from real ecosystems show us that this is not the case
N-species interactions are taken into account, the existe
of multiple attractors and the unpredictable nature of high
order interactions makes intrinsic dynamics much more
evant than natural selection in the long run@16#.

Additionally, theories on macroevolution must be able
say something quantitative~and so testable! concerning the
statistical properties observed in the fossil record. Roug
the following observations have been made.

~1! The extinction pattern of species~or families or other
taxonomic units! is clearly punctuated. Long intervals o
time show low extinction rates, but from time to time a sha
rise in extinction levels is observed@14#. An example is
shown in Fig. 1. The corresponding power spectrumP( f ) is
also shown, with a power-law behavior, i.e.,P( f )} f2b. In
this example and others analyzed in the fossil record@6# it
has been found that very oftenb'1.

~2! The distribution of extinctionsN(m) of sizem follows
a power-law decay withN(m)}m2a with a'2 @6,15#.

~3! The lifetime distribution of family and genera dura
tions N(t) follows a power-law decayN(t)}t2k of k'2
@17#.

~4! The statistic structure of taxonomic systems a
shows fractal properties. For example, the number of gen
formed byS species,Ng(S), follow a power-law distribution
with Ng(S)}S

2ab with ab'2 @18#.
~5! A study of the rates at which different groups of o

ganisms go extinct through time shows that a species m
disappear at any time, irrespective of how long it has alre
existed. This result, first reported by Leigh Van Valen@19#
strongly modified the ecological view of macroevolution.

These five observations should be explained by any c
sistent theory of macroevolution. As far as we know, there
no theory, based on classical population genetics~i.e., on

FIG. 1. Total number of families that went extinct from th
Cambrian~about 600 milion years ago! to the present. The main
figure represents the power spectrum~here calculated as the Fourie
transform of the autocorrelation function! of the series in the inset
It is of the formP( f )} f2a.
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microevolution! able to reproduce and interpret these pro
erties. This obviously does not mean that such a the
would not be possible. But, in principle, it would be e
tremely complicated, as far as a large set of equations inv
ing populations together with equations for parameter se
tion would be necessary.

There is, however, an alternative approach based on
so-called self-organized critical phenomena@5#. Self-
organized criticality~SOC! refers to the tendency of larg
dynamical systems to evolvespontaneouslytoward a critical
state typically characterized by spatial and temporal s
similarity. One of the conjectured applications of SO
theory was precisely the dynamics of large-scale evolut
@1–4#. The underlying idea is to identify simple, but biolog
cally consistent mechanisms able to drive the system tow
a critical state. At such a state, some of the observed sc
free properties would be naturally obtained~the opposite,
however, is not true: power laws can be obtained in nonc
cal systems@15#!. Additionally, universal behavior is ex
pected, and so no detailed set of rules is necessary.

In this paper we explore a previously introduced@3,4,16#,
simple model of macroevolution which poises itself to
critical state. In Sec. II the model is briefly introduced, and
first important property, i.e., the evolution toward highly u
predictable states, is described. It is conjectured that suc
unpredictable state makes macroevolution essentially
couple from microevolution, as early suggested by some
leontologists@13#. In Sec. III some analytic results are d
rived, and in Sec. IV the existence of a fractal taxonomy,
emergent property of our system, is described. In Sec. V
outline some of the implications. An interesting interpre
tion of macroevolution, as a dynamical process, is int
duced.

II. EVOLUTION MODEL

Recently, the authors introduced a simple self-organi
model of macroevolution@3,4,16#. In that model, the inter-
action among species is introduced by means of a conne
ity matrix J5(Ji j ), and evolution is represented throug
changes in its elements. A set ofN species which can be
found in a stateSiP$0,1% is considered. The elementsJi j are
allowed to take real values in the interval@21,1#, and the

FIG. 2. Temporal variation of the Boltzmann entropyH(t).
WhenH(t)→Hmax5 ln(2), extinctions are triggered. The displaye
system has a sizeN5200.
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4502 55RICARD V. SOLÉAND SUSANNA C. MANRUBIA
state of each species is updated according to

Si~ t11!5FS (
j51

N

Ji j ~ t !Sj~ t !D ~4!

where the functionF(z)51 if z.0 and zero otherwise. Thi
last equation can be understood as the discrete counterp
Eq. ~1!, but involving a much larger time scale. The model
updated in three steps, as follows.

~i! Random changes in the connectivity matrix. Each ti
step we pick up one input connection for each species
assign to it a value drawn from the uniform distributio
pu(w)5

1
2 in the interval@21,1#, without regard to the pre

vious state of the connection.
~ii ! The local fields are computed,Fi(t)5( j Ji j (t)Sj (t). If

some of these fields fall below zero, let us say
e51, . . .m, the set of connections Je j5Jje50
(; j , e51, . . .m), synchronously. An extinction of sizem
has taken place.

~iii ! Diversification. One of the alive species,a
P$m11, . . . ,N% is chosen at random, and its connectio
are copied to the extinct ones:Je j5Ja j , Jje5Jja , and; j .

In our previous paper@4#, it was shown that the system
evolves to a critical state with power laws in the extincti
sizes@N(m)}m2a, with a'2] @20#, and waiting times until
extinction, which reflect the well-known punctuate
equilibium behavior displayed by real macroevolution@12#.
In this paper we have analyzed the model in order to~1! have
a better characterization of the intrinsic dynamics, and~2!
interpret the observed behavior in evolutionary terms.
our extinction events start with a single or a few extin
species in the first time step. In following instants of tim
the removal of connections and the replacement of the
tinct species may have two very different effects on the
maining species of the system. Sometimes, if the species
we choose to replace the extinct ones has an average val
connections above the average of the system, we will ob

FIG. 3. Numerical~symbols! and analytical~continuous line!
values of the entropyH(t) for three different system sizes. Th
initial condition has been numerically fixed.
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a situation where the local field of the species has increa
and thus becomes situated further from the extinction thre
old, leading to a more stable state. In this case, a close
tinction event is not very likely. On the other hand, simp
by chance, we could have chosen an ancestor with a
local field ~even negative!. In this second case, the new sp
cies and the remaining ones will be proner to extinction, a
a larger event may take place. This might start a chain
avalanches, a domino effect that eventually may lead t
large mass extinction.

The described effect can be quantitatively measured in
following way. The random changes in the connectivity m
trix @rule ~i!# make the trophic links among species more a
more complex. This complexity can be simply quantified
means of a statistical measure. We will first consider the ti
evolution of connections. In the most general case, we
consider the ~time dependent! continuous distribution
f (J,t) of connections. For simplicity, however, we will re
strict ourselves to a more simple formal approach accord
to which we just keep track of the sign of the connectio
Most of the results are basically equivalent in both a
proaches. Besides, in many real situations, the structur
the connectivity matrix in a given ecosystem is limited to t
knowledge of the signs of the cross interactions@21#. Let
P(J1,t) and P(J2,t)512P(J1,t) be the probability of
positive and negative connections at timet, respectively. The
time evolution ofP(J1,t) is defined by the master equatio

]P~J1,t !

]t
5P~J2,t !p~J2→J1!2P~J1,t !p~J1→J2!.

~5!

FIG. 4. Variation of the average probability of finding a positiv
connection just before and just after an event of sizem takes place.
The entropy always decreases after the extinction event and
replacement have taken place. The plots were calculated for a
tem of sizeN5100 and have been averaged fort5106 time steps
after a transient was discarded. In the inset, we show the de
dence of the entropy on system size for the minimal extinction, t
is m51. This minimal extinction is considered to be the one th
may trigger an avalanche of extinctions. As can be seen, the
stable maximal valueHmax5 ln(2) has to be reached in the lim
N→` in order to start a chain of extinctions.
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55 4503CRITICALITY AND UNPREDICTABILITY I N . . .
From rule~i!, we have a transition rate per unit time given
p(J2→J1)5p(J1→J2)5(2N)21, and we obtain an expo
nential relaxation

P~J1,t !5 1
2 $11~2p021!e2 t/N%, ~6!

where we have the initial conditionP(J1,0)5p0. This result
leads immediately to an exponential decay in the aver
value f T5(( iFi)/N of the local fields,f T}exp(2t/N). The
temporal variablef T acts as a control parameter in our sy
tem @4#. This exponential time dependence gives a cons
largest decay modet51 instead of the usual critical slowin
down approach wheret5jz (j is the correlation length o
the system andz is the dynamical exponent associated to
critical slowing down; see@22# for more details!. We find
z50, which indicates an anomalous approach to the crit
state that has also been observed in a mean-field approx
tion of the Bak-Sneppen~BS! model @23#. We can compute
the entropy of the connections, i.e., the Boltzmann entr
H(t)52P(J1,t)ln@P(J1,t)#2@12P(J1,t)#ln@12P(J1,t)#. In
Fig. 2, we represent the temporal evolution of the entro
together with the extinction pattern, and in Fig. 3 the nume
cal and the analytical variations of the entropy are sho
Recall that in the analytical calculation the zeros that mi
be found after the extinction event are not taken into acco
This temporal evolution of the entropy has also been
served in Ray’s model tierra of artificial life evolution@24#.
The system slowly evolves to an ‘‘attractor’’ characteriz
by a randomly connected network. In this state, sm
changes of strengh 1/N can modify the sign off T , and an
extinction event may take place. In the limitN→`, only
when the entropy is maximal@Hmax52 ln(12)# is it possible
to find the triggering extinction. The process of replacem
works against the increase of entropy, and introduces o
in the system by means of similar trophic links. A very i
formative measure of the strength of the fluctuations in
system is given by the representation of the average p
ability of positive ~or negative! connections in the system
just before and just after an event of sizem takes place. Our
results are represented in Fig. 4, together with the ave
entropy when an extinction of sizem51 takes place as a
function of system size. The maximum value of the entro
is required to start an extinction event, and this maxim
value is usually responsible for the extinction of one or jus
few species. When this triggering extinction event tak
place, the system has to reorganize to a more ordered s
ture far from the instability, and in some cases several c
secutive extinctions are required before the avalanche s
and the system starts again to relax towards the crit
threshold. These results are depicted in Fig. 5. As can
seen, large extinctions can only be obtained after some s
of ‘‘bad luck,’’ initiated by a small event. This first event ca
only be obtained when the entropy is' ln(2), and this value
is further approached asN→`. The usual average output o
an extinction event is a more ordered system, with a
creased value of the entropy.

The overall effect of the relaxation toward a random n
work is a highly survival of species. As a consequence, in
long run all species are equally likely to become extinct,
observed in the analysis of the fossil record. Let us ment
however, that a careful inspection of our simulations poi
e
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out a power-law behavior of this quantity for small time
~consistent with the observed lifetime distribution! together
with a well-defined and wide exponential cutoff. This res
suggests that perhaps the statistics available from the fo
record are not, at this level, complete enough to detect
power-law component, which nevertheless shall be pres
in the essentially exponential functions supporting the R
Queen effect in order to make both results compatible~field
observations 3 and 5!.

III. ANALYTIC RESULTS

The stationary solution of the system can be character
by the distribution of connectionsp(w)in the J matrix. Let
us call p(w,t) the probability of finding a connection o
valuew at timet. Using a mean-field approximation, we ca
write in two steps the following master equation for th
probability:

p~w,t1 1
2 !5p~w,t !2

1

N
p~w,t !1

1

2N
,

p~w,t11!5p~w,t1 1
2 !2 k̄q~w,t1 1

2 !

1
1

12 k̄
@p~w,t1 1

2 !2 k̄q~w,t1 1
2 !#, ~7!

wherek̄ is the average probability of extinction, and we ha

FIG. 5. Enlargement of the variation of entropy and probabil
of positive connections when a burst of extinction events ta
place. The avalanche starts with a small extinction when the
tropy is close to its unstable value and in some cases it is follow
by larger events. Here we can talk about ‘‘bad luck’’ because
temporal extent and the total amount of species that go ext
depend on the chance in the election of the species that is goin
replace the extinct ones. In our system, we can observe preshoc
large mass extinctions. The system always becomes more ord
after one such burst, as can be observed in the decrease o
entropy. The simulated system has sizeN5100.
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4504 55RICARD V. SOLÉAND SUSANNA C. MANRUBIA
definedq(w,t1 1
2) to be the probability of removing a con

nection of valuew from the matrix when an extinction o
average sizem̄5Nk̄ takes place. The first equation simp
considers the random change in the interactions@rule ~i!#: a
valuew will disappear with probabilityp(w,t)/N and will
appear with probability 1/2N. The second equation takes in
account the removal of connections due to extinction~second
term! and the introduction of additional connections throu
diversification~third term!. The fact that we cannot directl
evaluate the probability distribution of removed connectio
makes the analytical treatement of the model slightly diff
ent from other mean-field approximations to evolutiona
models @23,25#. Our mean-field approximation consists
removingm̄N connections at random from the matrix, an
adding the new ones just by picking up randomly the sa
number of connections from the remaining ones, with
considering that in rule~iii ! the copied connections all be
long to the same species: we get rid of the correlations.
further consider the average extinction ratek̄ instead ofk,
which would be time dependent. The stationary solution
Eq. ~7! reads

~Nk̄21!p~w!2Nk̄q~w!1 1
250. ~8!

This equation is formally identical to the one obtained for t
stationary probability distribution of fitnesses in the B
model @see Eq.~5! in Ref. @23##. Equation~8! has the solu-
tion p(w)[q(w)[ 1

2. In Fig. 6, we represent the numerical
obtained distributionp(w) for different system sizesN. As
can be seen, the mean-field solutionp(w)51/2 is asymptoti-
cally approached asN→`. The BS model, or the variation
introduced by Roberts and Newman@25#, both have uniform
distributions for fitnesses above a certain self-organi
threshold. This threshold comes from the explicit definiti
of extremal dynamics. In our case, although in some se
the dynamical rules lead to the removal of the species w

FIG. 6. Distributionp(w) for different system sizes. These hav
been obtained by averaging over 106 time steps snapshots take
every 100 time steps. The connections with zero value are not ta
into account. As can be seen, these distributions assymptoti
approach the mean-field solutionp(w)5 1

2 for N→`.
s
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e
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the lowest local field, no extremal principle holds for th
connections, for which the master equations are written@26#.

The solution of Eq.~8! can be obtained exactly if we
consider just two values for the connections:Ji j561 ~see
@4#!. In this case, bothq[q(1) and k̄ can be computed a
follows: in the mean-field approximation,k̄ is simply the
probability of choosingN numbers from the matrix such tha
their sum~the local field! is negative or zero. This means th
we have to find a maximum quantity ofN/2 1’s in the set, so

k̄5 (
M50

N/2 S NM D pM~12p!N2M, ~9!

where we have definedp[p(1), andq can be written as

q5 1
21

^F2&
2N

, ~10!

where we have defined

^F2&5 (
M50

N/2

~2M2N!S NM D pM~12p!N2M ~11!

as the average value of the removed local fields. Substitu
of the last two expressions into the stationary solution~8!
gives the following equation forp:

p5

NF (
M50

N/2 S NM D pM~12p!N2MGF121
1

2N
^F2&G2

1

2

N (
M50

N/2 S NM D pM~12p!N2M21

,

~12!

which has the mean-field solutionp5 1
2. As can be seen, the

exact solution for the master equation requires the evalua
of the distribution displayed by the removed connectio
taking into account the criterium over its sum. It could
calculated explicitly in the discrete case, and the continu
case has been extrapolated from that one, and verifie
fulfill the equations and to approach the theoretical solut
numerically.

IV. FRACTAL TAXONOMY

In the history of evolution, natural parental links amon
different species naturally appear as a result of mutation
diversification from an ancestral group. The relationsh
among species is usually represented by means of a ph
genetic tree, where the moment of splitting of a new spec
from an old one is represented in an axis of a tw
dimensional plot, together~usually! with a ‘‘distance’’ to this
species in another axis, which intends to account for
degree of initial taxonomic separation. There is some con
versy about the goodness of the classification of species
genera, genera into families, and so on~the so-called tax-
onomy!. Nevertheless, recent studies about phylogen
trees at different taxonomic levels~generation of new spe
cies, new genera, new families, new clades, etc.! suggest that
there might be some kind of universality in those trees in
pendent from the taxonomers point of view@18#. That is, it

en
lly
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55 4505CRITICALITY AND UNPREDICTABILITY I N . . .
may be that the grouping of subtaxa within a higher taxa
not an artificial human ordering, but the result of the ve
process of evolution. On the other hand, if self-similarity
taxonomy holds, this would be an independent support to
conjecture that real macroevolution is operating close t
self-organized critical point.

The dynamical rules that define our model naturally po
the system to a critical state. In this critical state, a prope
of real taxonomy is recovered: the system generates fra
phylogenetic trees, as has been observed by Burlando@18#.
The value of the critical exponentab that defines the
‘‘branching’’ of species into others is the same as our ex
nent for the extinction sizes,a5ab'2, and is very close to
the exponent obtained from real data@18#. This result is a
direct output of our third rule, replacement of extinct speci
provided we chose a single species to act as the ancest
all the new ones. This result, however, can be extende
the case of choosing species at random to replace the ex
ones, and the value of the exponent remains unchanged

We have also measured the distribution of the numbe
species that at any time have belonged to a given tree.
means that we sum over all the time that at least one spe
phylogenetically linked to the first ancestor is alive. In ord
to do so, we pick at random one species from the system
count the total number of species that have appeared a
scendents from this first one. This is the size of our trees.
The distribution isD(s)}2b, with b'3. In Fig. 7 we dis-
play the distributionD(s) for different system sizes and a
example of a phylogenetic tree. Some other models have
considered this generation of trees. In this context, Van
walle and Ausloos@27# have obtained phylogenetic tree
with a fractal dimension depending on a certain paramete
their model, and Newman@15# was also able to define
taxonomy in a system driven by random external outputs
obtain an exponent compatible with a power-law distribut
of exponent 2.

FIG. 7. Distribution of phylogenetic tree sizes. The size of a t
is defined as the total number of branches it possesses or the
number of species that originate from the first ancestor. Ab
107 time steps are required to give the shown distributions. T
continous line has a slope of23. In the inset, a tree from a syste
of sizeN550 is shown. The vertical axes represent time and
horizontal axes the species. When a speciation event takes p
the new born species is linked to the ancestor with a dotted l
The length of the vertical lines represents the lifetime of each of
species.
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V. SUMMARY AND DISCUSSION

We have analyzed a model of large-scale evolution th
though simple, keeps some relevant traits of the real proc
and is able to quantitatively recover the main observation
macroevolution. These include punctuated equilibriu
power laws in the distribution of extinction events, and lif
times of species, fractal taxonomy, and a rate of disapp
ance independent of species age. In particular, the obta
value for the distribution of extinctions,t'2, is very close
to the exponent extracted from the fossil record@17# and also
near the value obtained by Roberts and Newman@25#. In
their paper, these authors modify the BS model in order
take into acount the influence of environmental factors. Th
introduce an external coherent noise that forces the simu
neous extinction of all the species below some random
chosen threshold. A different model that simply relies
external stresses, without any mechanism to make the
cies interact directly, was introduced later by Newman@15#.
The approach is, however, the same: it is the external in
ence and not the self-organization that causes the extinc
In this last model, the coherent effect that makes a cer
fraction of species become simultaneously extinct is e
clearer than in the model with the BS mechanism. In o
model we also have a large coherent effect due to the pro
of species replacement, which is able to generate a la
mass extinction when a species with a low local field is ch
sen to replace the extinct ones: it is very likely to have la
domains in theJ matrix with essentially the same numb
~which also justifies the one-dimensional approach to
problem; see@28#!. It is quite clear that Roberts and New
man’s model, Newman’s model, and ours all include a f
ture, coherence, that seems to be essential to recover the
exponent for extinction sizes. In our case, all the expone
are clearly robust under many different definitions of t
precise rules of the model, as far as the effects of drift tow
the extinction threshold and coherence are maintained. Th
two characteristics might define a universality class, pr
ably able to describe real macroevolution. The main theo
ical consequence of our model is that macroevolution can
interpreted in an interesting way. Species interact throu
changing couplings. Though two given species directly c
nected can be understood in terms of classical two-spe
coevolution, higher-order~indirect! couplings can trigger
small extinction events which, eventually, may lead to m
extinctions. In this context, the unpredictable nature of th
interactions cannot fit into the classical theory. This mo
could be used as a theoretical framework for the old con
ture of an intrinsic separation between microevolution a
macroevolution@12,13#.

Finally, we should mention that our model could be
interesting approach to other complex systems with
evolving network structure. Economic networks, in partic
lar, have been widely explored as complex adaptive syst
@29,30#. In these networks, agents are coupled through ev
ing interactions. Noise in their couplings arises in seve
ways. In real life, agents are not always able to process
fectly information about the system~the network! in which
they are embedded. Adaptive agents continuously sw
their behavior as a consequence of changes in their expe
tions @30#. At the same time that agents are continuou
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evolving, the couplings among them evolve in rather co
plicated ways. The consideration of agents~or whole mar-
kets! with limited rationality will introduce changes in th
couplings that may not always represent the best man
ment of the resources. This situation leads to small, rand
changes similar to those introduced by our rule~i!. Several
models of market dynamics have shown that~as in the real
economy! punctuated equilibrium is often observed@31#.
Additionally, theoretical studies of generic mathematic
models of market dynamics clearly show that, as coupli
among stable markets grow, the likelihood of instabiliti
also increases, leading to a loss of the general equilibrium
the system becomes increasingly diverse. The stability p
erties of these generic market models have been show
apply not only to this specific case, but also to comp
.
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ecosystems@32#. In our model, the system spontaneous
evolves to a highly diverse network of connections, link
with the onset of instabilities. Finally, recent studies@33#
have revealed that markets display fractal structures in t
internal organization. Interestingly, our fractal taxonomy
the outcome of a self-organized critical system with no ch
acteristic time scales. Perhaps the observed fractal prope
of markets can be generated through a similar process.
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