PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Intermittency model for urban development
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The evolution of a stochastic reaction-diffusion model whose dynamics leads to the development of a
strongly inhomogeneous, spatiotemporally intermittent density field is analytically and numerically studied.
The processes underlying the model can be identified with those that govern urban development. The results
for the reaction-diffusion model are thus compared with data obtained from real human demography. Statistical
properties of urban distributions—in particular, the universal power law observed in the population frequency
of cities—are successfully reproduced by the mof81.063-651X98)08107-Q
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I. INTRODUCTION: UNIVERSAL LAWS geographical conditions. Figure 1, for instance, shows the
IN DEMOGRAPHIC DISTRIBUTION frequencyf(n) for the 2700 most populated cities of the

. . .world [5] and for the 2400 most populated cities of the
The emergence of coherent macroscopic behavior is a digyjieq states of Americf6]. The data for Switzerland, in-

tinctive feature in the dynamics of natural complex SystéMgeay stand for the largest 1300 municipalifigl and that
[1]. The interaction between their constituting elementsyt the ten largest countries in south Europe corresponds to a
originates cooperative evolution that can strongly differ from;q;g) population counting in a square grid of 10%oells[5].
the individual dynamics. In the vast realm of biological phe-|, these two cases—whefén) represents, respectively, the
nomena, one of such macroscopic manifestations of comfraction of municipalities and grid cells with population
plexity is social behavior, for instance, in the form of demo-n—ruyral population is also taken into account. It is then ap-
graphic evolutior{2,3]. parent that when population outside cities is also included,
The macroscopic dynamics of complex systems is ofterf(n)~n~2% with z,~2. The distributionf (n)~n~2 charac-
characterized by the appearance of universal laws, whoserizes thus human settlements both inside and outside cities,
validity does not depend on the value of the parameters thaind is extremely robust with respect to particular conditions
drive the microscopic evolution—which put in evidence theof a certain country or region. In fact, the data for the world
presence of general underlying mechanigais These uni- are expected to mainly reflect the situation of developing
versal laws are typically quantified in terms of characteristiccountries, the USA is an economically developed but rela-
exponents in scale-invariant distributions. A striking ex-tively young country, whereas Switzerland and Germany are
ample of such universal laws occurs in the field of humarold countries with very stable populations but strongly dif-
demography. Some 50 years ago, it was already realized that
urban distributions follow certain characteristic patterns that 10’

are repeatedly found in many countries, irrespectively of o0 - %

their social and economical conditions and history. The pio- 10 N "a e,

neering work of Zipf included the power-law distribution of 10 Al A " . .o.

city sizes according to their “rank” as one of the instances § A u - °

of what is nowadays known as Zipf I#]. Those firststud- = 10° | e ¢ ® . A A = L

ies by Zipf with a few well-known countries have been & . . AA . -

widely extended over the whole human populatidh Such 2 107 ¢ A

observations make it possible to conclude that a universa§ 0 | @ World ¢ *

property to be ascribed to urban settlementéljsthe frac- §1 m USA *

tion f(n) of cities with populationn follows a power law ™ 10" | A Switzerland ¢

f(n)ecn™"o, with ry~2. (The subindexo stands here for . @ Europe *

“observed” quantities while, in the following, the results of 107

our model will be denoted without subindgXRemarkably, 5 5 4 S G = "
10 10 10 10 10 10 10

this property holds not only for cities, but also applies when

rural population is included, at least within areas of even Population (in number of inhabitants)

FIG. 1. Population frequency for the 2700 largest cities of the
) _ world [5] (r,=2.03+0.02), for the 2400 largest cities of the United
*Op leave from Complex Systems Research Group, Universitagtates of Americ46] (r,=2.11+0.06), for the 1300 largest mu-
Politecnica de Catalunya, Campus Nord, B4, 08034 Barcelonapicipalities of Switzerland7] (z,=2.16+0.11), and for the total
Spain. population of the ten largest south European countfigs(z,
TPermanent address: Consejo Nacional de Investigaciones-Cient=2.17-+ 0.18) divided in equal areas of 10 knFor the sake of
ficas y Tenicas, Centro Atmico Bariloche e Instituto Balseiro, clarity, the data sets have been mutually shifted in the vertical di-
8400 S.C. de Bariloche, BINegro, Argentina. rection. The straight lines have slop€2.
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with t<t’'<t+1, whereé(x,t) is a dichotomic stochastic exponent observed in real demographic distributions. Be-
process for eacR, defined as sides, in the intermediate region where an exponent—

different from the observed one—is well definetin)

~n~1, the population frequency is never stationary and de-

(1—q)p~*, with probability p pletes continuously to balance the growth in the extreme

2 zones. As generated by this sole process, intermittency can
qualitatively reproduce the strong heterogeneity of demo-
graphic distributions but fails to account for their detailed
statistical properties. The combination with a diffusion
mechanism, instead, will provide a successful explanation of
those properties.

§(xt)= q(1—p)~%, with probability 1-p.

The parameteq varies in principle within the intervdl0,1]
but, due to the symmetry of the possible valuestafnder
the change §,9)—(1—p,1—q), it can be restricted to
[0,min(1-p,1/2)].

The multiplicative process$l) is a generalization of the

Zeldovich model for intermittency20], which corresponds B. Diffusion processes
to p=1/2 andg=0. As advanced above, it preserves the As discussed above, the second substep in the dynamics
average population, of our model corresponds to diffusion. In discrete-time evo-

lution, diffusion can be performed by subtracting from each
sitex a certain fractionr (0<a<1) of the local population

, 1-q q and homogeneously distributing that fraction on a prescribed
(n(xt")=p D (n(x,t)+(1-p) 1_p(n(x,t)> neighborhood ok. This can be expressed as
=(n(x,1)), 3
o
but it can be shown that, under the action of this sole pro- n(x,t+1)=(1—a)n(xt’")+ M > n(x,t), (5
cess, higher population momentgn(x,t)¥)==,n(x,t)¥ X' e{x}

(k>1), diverge as time elaps¢8,21]. This divergence is
in fact the mathematical characterization of intermittencywhere the sum runs over the neighborhgaf of x andk is
and is a direct consequence of the appearance of strong i€ number of sites ifix}.
homogeneities in the distributiar(x,t). Sharp spikes appear ~ Although this diffusion mechanism can be readily imple-
where the events with probability accumulate and the local mented in numerical simulations, the analytical problem—
population is at each step multiplied by €f)p~1>1. In  Which can be put as a reaction-diffusion equation with a
the remaining sites, whose number grows in time, the popustochastic reaction term—proves to be rather complicated to
lation decreases. Fluctuations thus play a key role in estat$olve in a two-dimensional space. In fact, to our knowledge,
lishing the population distribution. only some generic properties of its solution are kndda|.
Without the action of diffusion, the reaction events Thus we consider first a simplified version of the diffusion
(1)—as any purely multiplicative stochastic process—wouldProcess, in which the neighborhodd} of each site is ex-
give rise to a log-normal distribution for the population fre- tended to the whole system. As we show later, the effects of
quencyf(n)_ In fact’ in Appendix A we show that the popu- this form of “g|0ba|” diffusion on the evolution given by
lation frequency is in this case given by ;[jhf? rgaction process are essentially the same as those of local
iffusion.

1. Global diffusion

i |AIn~1 r{ (Alnn+Bt—pt)? @

n)= expg — _ ' When the neighborhoodix} where population fromx
[—tn(1— tp(1
mtp(1=p) PL1=p) spreads by diffusion is extended to the whole system{%q.

whereA andB are constants depending prandq only. It becomes

is well known that the log-normal distribution behaves as

f(n)~n~1 over a wide range that, in multiplicative stochas-

tic evolution, increases as time elapses. In @jjthe power- n(x,t+1)=(1-a)n(xt") +ang, (6)

law approximation holds1<exd|(B—p)/Alt], i.e., within a

range that grows exponentially with time. Note that the re-whereng is the (constant average population per site, that

maining factor is still time dependent. we had initially fixed asng=1. The diffusion process be-
We conclude that a purely multiplicative stochastic pro-comes then effectively local in space and the whole effect of

cess such as Eql) is unable to produce the power-law reaction and diffusion can be written in a single step as

(1—a)(1—q)p *n(x,t)+a, with probability p

nixt+1)= (1—a@)q(1—p) n(x,t)+a, with probability 1—p.

(7)



298 SUSANNA C. MANRUBIA AND DAMIA N H. ZANETTE PRE 58

This stochastic process, which reduces to@&yfor =0, is p p

not purely multiplicative. By virtue of its linearity, however, f'(n")dn'= pf(m”'%(m”’)

it can be exactly solve@21]. Due to the relatively strong

effect of global diffusion, intermittency is here inhibited for 1-p 1-p

sufficiently large values ofr. For g—0, for instance, an +(1_p)f(T”’)d(T”’)- (10
inhomogeneous, peaked distribution developsdetl—p

only. Under these conditions, the population frequencyNow, since the population frequency is supposed to be in a
f(n)—which is defined forny,,<n<nma(t), with npin=a  stationary state, we should ha¥e=f, which produces the

and N pat)~[(1—a)/p]'—reads functional equation
o 2 1-p)2 [1—
()= —p 2P f(n)= <" f( P n)+( P) f( pn). (11)
pZaln[(1—a)/p] 1-q \1-q q q
1—a—p | Mp/ilp/(1-a)]-1 For arbitrary values op andq, its only two exact solutions
X[ 1+ pa " @& with definite power-law dependencé(n)=n~Z, are f(n)

=An"1 andf(n)=An"2, with A a normalization constant.

The exponent of the first one coincides with that of the
aBurely reacting system. We recall, however, that in that case

the population frequency was not stationary. The second so-

as shown in Appendix B. For large populations, it behaves

f(n)~n77 (90 lution is in full agreement with real demography.
The stability of both solutions with respect to the full
with z=1+In p/in[p/(1— &)]. dynamics of the model can be studied by means of numerical

This result drives the attention to two noticeable facts.€chniques. As shown in the next section, our simulations

First, diffusion is able to modify the exponent in the power- hav?z always converged to a population frequeri¢y)
law dependence of the population frequency determined by M~ With z~2, even from initially inhomogeneous distri-
the reaction process in a nontrivial manner. The new expoPutions with large power-law regions wheze-1. We can-
nentz is not universal, in the sense that it depends on th&0t completely discard the pOSSIbIEtly that some special ini-
values ofp and . Note that fora—0 and arbitraryp, z tial dlstrlbutlon's'c'onverge' .tb(n)jn , but it is clear that a
—.2, which does not coincide with the exponent given b Igrgg cla_lss of initial cond|t|ons—|nc_lud|ng the homogeneous
reactions ¢=1) but agrees with the observed value. Thisdistribution we are interested in—evolve towards an
implies that the limit of a purely reacting system0) is asymptotic population fre_quency whose power-law decay is
singular for this system, and that, for weak global diffusion,” excellent agreement with real data.

the model reproduces instead the exponent of real demogra-

phy. The second point to be remarked as a difference witHIl. NUMERICAL RESULTS: POPULATION FREQUENCY

the purely reacting system is that, in the region where a AND CLUSTER ANALYSIS

power law in the population frequency is established by the

. . ) . ) In this section, we present the results of numerical simu-
competing effects of reaction and diffusion, a stationary dls-Iations of the previous model. In our simulations, the popu-
tribution settles down. As we show in Sec. lll, thisis in full . . ' . '

Jation at each site of the X N-square lattice is a real number

agreement with numerical results for the more realistic case e . .
of local diffusion. and local d|ﬁu§|qn is defined as in Eth). _ .

Due to the finite size of the lattice, the numerical simula-
tions are strongly affected by the fluctuations that drive the
model. These lead the finite system to eventual extinction in

From previous results for the reaction-diffusion Zeldovicha characteristic time of the order Nf[22]. This effect is not
model[18], it is expected that, in contrast with global diffu- representative of the dynamics on an infinite domain consid-
sion, local diffusion in low-dimensional systems is unable toered in the preceding section. We have solved this problem,
inhibit the formation of strong inhomogeneities in the popu-on one hand, by working on rather large latticeN (
lation distribution. According to simulations—and as sug-~1000) with periodic boundary conditions and, on the other,
gested by our above discussion on global diffusion, wherdy adding a control process that avoids the spurious annihi-
the resulting distribution does not depend on time—local dif-lation of populatiof 23]. On large lattices|>500)—where
fusion is necessary to define a stationary population fresimulations are extremely time-consuming—the system is
qguency in a growing range of values nf Once this time- able to settle down in a transiefguasistationanypopulation
independent distribution is established, the main effect oflistribution of the type derived in the preceding section,
diffusion consists of a population redistribution from the f(n)~n~2. Eventually, however, the effect of fluctuations is
sites with higher values ai to low-populated sites. felt by the finite system, the power-law distribution is de-

In the intermediate stationary region, the profilefgh) stroyed, and the population is finally led to extinction. For
can be fully ascribed to reactions. In the reaction subgtep smaller systems with periodic boundary conditions this effect
each value oh changes to’' =(1—q)p~1n with probabil-  of fluctuations can be avoided by adding extra population to
ity p or ton’=q(1—p) 'n with probability 1- p. For an  already occupied sites when the total population falls below
infinitely large system, these two contributions determine dts initial value, as explained in the following.
new population frequency given by In our simulations the initial population 2, with one

2. Local diffusion
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FIG. 3. Exponential decrease in the urbanization probability
from the compact city core. The function is averaged over many FIG. 4. Fractal dimension of the boundary of a typical large
independent realizations. The varialbleepresents the distance, in cluster. In the example displayed, the slop®is 1.3. A systematic
lattice units, to the most populated cell in every snapshot. In thestudy of many different realizations of the mod&r random pa-
vertical axis the probability of finding an occupied cell at distatice rameterg returns values of the fractal dimension between 1.15 and
is represented. 1.35, the higher the dimension the larger the cluster on the average.

counting algorithm[24]. A representative case of a cluster the model with those observed in urban settlements and have
and its boundary, together with the obtained values for théound very good agreement in the exponents of the resulting
fractal dimension, is displayed in Fig. 4. As already statedpower-law population frequency of cities. Other quantities,
the very nature of the model allows strong fluctuations in thesuch as the distribution of city areas, the decay of population
system, and thus in the groups of connected cells. Our meaensity, and the fractal dimension of city boundaries, have
sures indicate that the fractal dimension of the largest clusteslso been successfully compared. Our main quantitative re-
in the numerical simulations—which usually contains fromsults are summarized in Table |.
10? to 10* cells—varies between 1.15 and 1.35, depending The exponent of the population frequency observed in
basically on the size of the cluster, and is in good agreemental demography appears to be extremely uniform: it is inde-
with field measure$10]. pendent of specific social, economical, or politi¢pfesent
or pasj conditions. This suggest that a successful model for
the processes that lead to this kind of universality has to be
based on simple and rather general assumptions. We have
We have studied in detail—by analytical and numericalanalytically proven that our model generates the same expo-
means—a stochastic reaction-diffusion model whose dynannent independently of the values of the paramepers, and
ics is essentially driven by fluctuations and, as a conseq that define its evolution. These parameters characterize in
guence, gives rise to strongly intermittent patterns both irfact particular conditions in the urbanization process. Large
space and in time. The processes that govern its evolution-values ofp and a should apply to regions with fast urban
namely, diffusive transport and a kind of autocatalyticdynamics, such as in developing countries, whereas small
reaction—can be identified with the basic mechanisms unvalues of those parameters describe slowly varying demog-
derlying human urban development. We have thus compare@phy. In real situations, of course, the processes that govern
the statistics of the spatiotemporal structures generated hyrban evolution are expected to be modulated in time both in

IV. DISCUSSION AND CONCLUSION

TABLE I. Comparison between values for different exponents and functions obtained from observed data
and from the analytical and theoretical results of the reaction-diffusion model presented here.

Model Observed data
Global demography z=-2 z,=—2.0x0.1[5]
City sizes(populatior) r=-1.90+0.03 ro=—2.03+0.02[5]
City sizes(area s=-1.93+0.03 s,=—1.80+0.05[8]
Population-area law B£=1.03+0.03 Bo~1[10,5
Urbanized profile Exponential Exponent[&,9]
Dimension of the boundary 1.¥D=<1.35 1.2<D,<1.4[10]
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short scales—due to rapidly fluctuating factors—and in the The indexk acts here as a parameter labeling the values

long term—as the region under consideration develops sasf n(t). From Eq.(A2), it can be expressed as a function of

cially and economically. Numerical simulations of our modeln andt as

have shown that even whgnand « vary at random in time

the exponent in the population frequency is preserved. The k=A In n+Bt, (A3)

other quantities analyzed numerically—in particular, the dis-

tribution of city areas—have also been shown to exhibitwith A={In[(1—q)(1—p)/gp]} * and B=A In[(1—p)/q]. In

well-defined power-law decays. addition, for larget and intermediate values & the prob-
Note that the present model does not take into account thability p, can be approximated by a Gaussian function:

effects of birth-death events, which could be thought of as a

severe limitation to the validity of our results. It can be ar- 1 k—pt)2

gued, however, that—in real demography—global popula px= p{ (k=pt } (A4)
) L - - = k_— - —_ .

tion growth becomes really important only when the popula- Vatp(l-p) tp(1=p)

tion has settled down. Social stability is in fact a necessary S )
condition for substantial growth. This has been the case, foNOW, the probability distribution fon, f(n), can be obtained
instance, in European populations, where exponential growtffom the relationf (n) = py|Jk/an|. Taking into account that

began only when the nucleation of modern cities had aIreakolﬂn:A”_1' we get

initiated [3]. Once a power-law population distribution has

been established, exponential growth can only shift the dis- () |Aln~t 4 (Aln n+Bt— pt)z} (A5)
oo n)= exp — ,

tribution, but does not affect the relevant exponents. 7tp(1-p) tp(1—p)

There has recently been an increasing interest in propos-
ing generic mechanisms able to explain the ubiquitous ap-

pearance of universal power-law distributions in physical,S:meer%’eﬁcs%ﬁ?irmr?@afl %Strzagj]tlwsfgpngvgraasgsr?;g etr:jca_
biological, social phenomen§4,12]. These mechanisms P - =9 %)) PSes, q

L . ._dratic exponential in this distribution becomes broader and
range _fror_n self-organizing ev_olut|0n to purely StOCh"J‘St'f:broader and, simultaneously, its maximum shifts at constant
multlphc.atlve_processe§: In this paper we have shown, mspeed. ForlA In nj<|(B—p)t, i.e., for n<ex|(B—p)/Alt]
connection with a specific problem in the area of global so- e exponential is practicallgl con'stant as a functiom ca‘nd

ciology, that models driven by stochastic processes can sat—e power-law approximatiofi(n)~n~—! holds. The range

isfactorily explain such universal laws in real systems. ; s . i
where this approximation is valid grows thus exponentially

with time.
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For g—0, our reaction model with global diffusion, Eq.
t(t7), becomes

with A=(1-«a)/p>1. The solution to this stochastic linear
nonhomogeneous evolution equation gives, for the possible
values ofn(t),

When restricted to local reactions, the multiplicative sto-
chastic process defined by Eq$) and(2) reads

APPENDIX A

k k+1
AT —1
nk(t)=a2 A|=a—A 1
= -
[(1—q)p‘1n(t), with probability p 0

q(1—p)~*n(t), with probability 1- p(-Al) with probability p,=(1—p)p¥, (B2)

nt+1)=

o ) ) . ) for k=0,...t—1 and
This linear stochastic evolution equation is readily solved.

For the initial condition(0)=1, the possible values oif(t) t_

are Nmax=A'+ a AT with probability p'.  (B3)
—q\k t—k

n(t)= (ﬁ) (L) Note thatn,,,>ny for all k.
p 1-p ' As in Appendix A,k plays here the role of a parameter

labeling the values ofi. In terms ofn it reads
with probability p,=C(t,k)p*(1—p)""%,  (A2)

k=——In

for k=0, . .. 1, whereC(t,k) = t1/KI(t—K)!. nA n+l

1 [A-1
( ~1. (B4)







