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Intermittency model for urban development
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The evolution of a stochastic reaction-diffusion model whose dynamics leads to the development of a
strongly inhomogeneous, spatiotemporally intermittent density field is analytically and numerically studied.
The processes underlying the model can be identified with those that govern urban development. The results
for the reaction-diffusion model are thus compared with data obtained from real human demography. Statistical
properties of urban distributions—in particular, the universal power law observed in the population frequency
of cities—are successfully reproduced by the model.@S1063-651X~98!08107-0#

PACS number~s!: 05.20.2y, 89.50.1r, 05.40.1j
d
m
nt
m
e
om
o

te
o
th
he

ti
x
a
th

ha
o
io
f
e

n

rs

f

e
e

the
e
e

-

to a

e
n
p-
ed,

ities,
ns

rld
ing
la-
are
if-

it
n

ien
,

the
d
-

di-
I. INTRODUCTION: UNIVERSAL LAWS
IN DEMOGRAPHIC DISTRIBUTION

The emergence of coherent macroscopic behavior is a
tinctive feature in the dynamics of natural complex syste
@1#. The interaction between their constituting eleme
originates cooperative evolution that can strongly differ fro
the individual dynamics. In the vast realm of biological ph
nomena, one of such macroscopic manifestations of c
plexity is social behavior, for instance, in the form of dem
graphic evolution@2,3#.

The macroscopic dynamics of complex systems is of
characterized by the appearance of universal laws, wh
validity does not depend on the value of the parameters
drive the microscopic evolution—which put in evidence t
presence of general underlying mechanisms@4#. These uni-
versal laws are typically quantified in terms of characteris
exponents in scale-invariant distributions. A striking e
ample of such universal laws occurs in the field of hum
demography. Some 50 years ago, it was already realized
urban distributions follow certain characteristic patterns t
are repeatedly found in many countries, irrespectively
their social and economical conditions and history. The p
neering work of Zipf included the power-law distribution o
city sizes according to their ‘‘rank’’ as one of the instanc
of what is nowadays known as Zipf law@2#. Those first stud-
ies by Zipf with a few well-known countries have bee
widely extended over the whole human population@3#. Such
observations make it possible to conclude that a unive
property to be ascribed to urban settlements is~1! the frac-
tion f (n) of cities with populationn follows a power law
f (n)}n2r o, with r o'2. ~The subindexo stands here for
‘‘observed’’ quantities while, in the following, the results o
our model will be denoted without subindex.! Remarkably,
this property holds not only for cities, but also applies wh
rural population is included, at least within areas of ev
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geographical conditions. Figure 1, for instance, shows
frequency f (n) for the 2700 most populated cities of th
world @5# and for the 2400 most populated cities of th
United States of America@6#. The data for Switzerland, in
stead, stand for the largest 1300 municipalities@7#, and that
of the ten largest countries in south Europe corresponds
total population counting in a square grid of 10 km2 cells@5#.
In these two cases—wheref (n) represents, respectively, th
fraction of municipalities and grid cells with populatio
n—rural population is also taken into account. It is then a
parent that when population outside cities is also includ
f (n);n2zo with zo'2. The distributionf (n);n22 charac-
terizes thus human settlements both inside and outside c
and is extremely robust with respect to particular conditio
of a certain country or region. In fact, the data for the wo
are expected to mainly reflect the situation of develop
countries, the USA is an economically developed but re
tively young country, whereas Switzerland and Germany
old countries with very stable populations but strongly d

at
a,

tı

FIG. 1. Population frequency for the 2700 largest cities of
world @5# (r o52.0360.02), for the 2400 largest cities of the Unite
States of America@6# (r o52.1160.06), for the 1300 largest mu
nicipalities of Switzerland@7# (zo52.1660.11), and for the total
population of the ten largest south European countries@5# (zo

52.1760.18) divided in equal areas of 10 km2. For the sake of
clarity, the data sets have been mutually shifted in the vertical
rection. The straight lines have slope22.
295 © 1998 The American Physical Society
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with t,t8,t11, wherej(x,t) is a dichotomic stochastic
process for eachx, defined as

j~x,t !5H ~12q!p21, with probability p

q~12p!21, with probability 12p.
~2!

The parameterq varies in principle within the interval@0,1#
but, due to the symmetry of the possible values ofj under
the change (p,q)→(12p,12q), it can be restricted to
@0,min(12p,1/2)#.

The multiplicative process~1! is a generalization of the
Zeldovich model for intermittency@20#, which corresponds
to p51/2 andq50. As advanced above, it preserves t
average population,

^n~x,t8!&5p
12q

p
^n~x,t !&1~12p!

q

12p
^n~x,t !&

5^n~x,t !&, ~3!

but it can be shown that, under the action of this sole p
cess, higher population moments,^n(x,t)k&5(xn(x,t)k

(k.1), diverge as time elapses@18,21#. This divergence is
in fact the mathematical characterization of intermitten
and is a direct consequence of the appearance of stron
homogeneities in the distributionn(x,t). Sharp spikes appea
where the events with probabilityp accumulate and the loca
population is at each step multiplied by (12q)p21.1. In
the remaining sites, whose number grows in time, the po
lation decreases. Fluctuations thus play a key role in es
lishing the population distribution.

Without the action of diffusion, the reaction even
~1!—as any purely multiplicative stochastic process—wo
give rise to a log-normal distribution for the population fr
quencyf (n). In fact, in Appendix A we show that the popu
lation frequency is in this case given by

f ~n!5
uAun21

Aptp~12p!
expF2

~Alnn1Bt2pt!2

tp~12p! G , ~4!

whereA andB are constants depending onp andq only. It
is well known that the log-normal distribution behaves
f (n);n21 over a wide range that, in multiplicative stocha
tic evolution, increases as time elapses. In Eq.~4! the power-
law approximation holdsn!exp@u(B2p)/Aut#, i.e., within a
range that grows exponentially with time. Note that the
maining factor is still time dependent.

We conclude that a purely multiplicative stochastic p
cess such as Eq.~1! is unable to produce the power-la
-

y
in-

u-
b-

s

-

-

exponent observed in real demographic distributions.
sides, in the intermediate region where an exponen
different from the observed one—is well defined,f (n)
;n21, the population frequency is never stationary and
pletes continuously to balance the growth in the extre
zones. As generated by this sole process, intermittency
qualitatively reproduce the strong heterogeneity of dem
graphic distributions but fails to account for their detail
statistical properties. The combination with a diffusio
mechanism, instead, will provide a successful explanation
those properties.

B. Diffusion processes

As discussed above, the second substep in the dyna
of our model corresponds to diffusion. In discrete-time ev
lution, diffusion can be performed by subtracting from ea
sitex a certain fractiona (0,a,1) of the local population
and homogeneously distributing that fraction on a prescri
neighborhood ofx. This can be expressed as

n~x,t11!5~12a!n~x,t8!1
a

k (
x8P$x%

n~x8,t8!, ~5!

where the sum runs over the neighborhood$x% of x andk is
the number of sites in$x%.

Although this diffusion mechanism can be readily impl
mented in numerical simulations, the analytical problem
which can be put as a reaction-diffusion equation with
stochastic reaction term—proves to be rather complicate
solve in a two-dimensional space. In fact, to our knowled
only some generic properties of its solution are known@18#.
Thus we consider first a simplified version of the diffusio
process, in which the neighborhood$x% of each site is ex-
tended to the whole system. As we show later, the effect
this form of ‘‘global’’ diffusion on the evolution given by
the reaction process are essentially the same as those of
diffusion.

1. Global diffusion

When the neighborhood$x% where population fromx
spreads by diffusion is extended to the whole system, Eq.~5!
becomes

n~x,t11!5~12a!n~x,t8!1an0 , ~6!

wheren0 is the ~constant! average population per site, tha
we had initially fixed asn051. The diffusion process be
comes then effectively local in space and the whole effec
reaction and diffusion can be written in a single step as
n~x,t11!5H ~12a!~12q!p21n~x,t !1a, with probability p

~12a!q~12p!21n~x,t !1a, with probability 12p.
~7!
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This stochastic process, which reduces to Eq.~1! for a50, is
not purely multiplicative. By virtue of its linearity, howeve
it can be exactly solved@21#. Due to the relatively strong
effect of global diffusion, intermittency is here inhibited fo
sufficiently large values ofa. For q→0, for instance, an
inhomogeneous, peaked distribution develops fora,12p
only. Under these conditions, the population frequen
f (n)—which is defined fornmin,n,nmax(t), with nmin5a
andnmax(t);@(12a)/p#t—reads

f ~n!5
12a2p

p2a ln@~12a!/p#

3S 11
12a2p

pa
nD 2 ln p/ ln[ p/~12a!] 21

, ~8!

as shown in Appendix B. For large populations, it behaves

f ~n!;n2z, ~9!

with z511 ln p/ln@p/(12a)#.
This result drives the attention to two noticeable fac

First, diffusion is able to modify the exponent in the powe
law dependence of the population frequency determined
the reaction process in a nontrivial manner. The new ex
nent z is not universal, in the sense that it depends on
values ofp and a. Note that fora→0 and arbitraryp, z
→2, which does not coincide with the exponent given
reactions (z51) but agrees with the observed value. Th
implies that the limit of a purely reacting system (a50) is
singular for this system, and that, for weak global diffusio
the model reproduces instead the exponent of real demo
phy. The second point to be remarked as a difference w
the purely reacting system is that, in the region where
power law in the population frequency is established by
competing effects of reaction and diffusion, a stationary d
tribution settles down. As we show in Sec. III, this is in fu
agreement with numerical results for the more realistic c
of local diffusion.

2. Local diffusion

From previous results for the reaction-diffusion Zeldovi
model@18#, it is expected that, in contrast with global diffu
sion, local diffusion in low-dimensional systems is unable
inhibit the formation of strong inhomogeneities in the pop
lation distribution. According to simulations—and as su
gested by our above discussion on global diffusion, wh
the resulting distribution does not depend on time—local d
fusion is necessary to define a stationary population
quency in a growing range of values ofn. Once this time-
independent distribution is established, the main effect
diffusion consists of a population redistribution from th
sites with higher values ofn to low-populated sites.

In the intermediate stationary region, the profile off (n)
can be fully ascribed to reactions. In the reaction substep~1!,
each value ofn changes ton85(12q)p21n with probabil-
ity p or to n85q(12p)21n with probability 12p. For an
infinitely large system, these two contributions determin
new population frequency given by
y

s

.
-
y

o-
e

,
ra-
th
a
e
-

e

-
-
e
-
-

f

a

f 8~n8!dn85p fS p

12q
n8DdS p

12q
n8D

1~12p! f S 12p

q
n8DdS 12p

q
n8D . ~10!

Now, since the population frequency is supposed to be
stationary state, we should havef 8[ f , which produces the
functional equation

f ~n!5
p2

12q
f S p

12q
nD1

~12p!2

q
f S 12p

q
nD . ~11!

For arbitrary values ofp andq, its only two exact solutions
with definite power-law dependence,f (n)}n2z, are f (n)
5An21 and f (n)5An22, with A a normalization constant
The exponent of the first one coincides with that of t
purely reacting system. We recall, however, that in that c
the population frequency was not stationary. The second
lution is in full agreement with real demography.

The stability of both solutions with respect to the fu
dynamics of the model can be studied by means of numer
techniques. As shown in the next section, our simulatio
have always converged to a population frequencyf (n)
;n2z with z'2, even from initially inhomogeneous distr
butions with large power-law regions wherez51. We can-
not completely discard the possibility that some special
tial distributions converge tof (n);n21, but it is clear that a
large class of initial conditions—including the homogeneo
distribution we are interested in—evolve towards
asymptotic population frequency whose power-law deca
in excellent agreement with real data.

III. NUMERICAL RESULTS: POPULATION FREQUENCY
AND CLUSTER ANALYSIS

In this section, we present the results of numerical sim
lations of the previous model. In our simulations, the pop
lation at each site of theN3N-square lattice is a real numbe
and local diffusion is defined as in Eq.~5!.

Due to the finite size of the lattice, the numerical simu
tions are strongly affected by the fluctuations that drive
model. These lead the finite system to eventual extinction
a characteristic time of the order ofN @22#. This effect is not
representative of the dynamics on an infinite domain con
ered in the preceding section. We have solved this probl
on one hand, by working on rather large lattices (N
'1000) with periodic boundary conditions and, on the oth
by adding a control process that avoids the spurious ann
lation of population@23#. On large lattices (N.500)—where
simulations are extremely time-consuming—the system
able to settle down in a transient~quasistationary! population
distribution of the type derived in the preceding sectio
f (n);n22. Eventually, however, the effect of fluctuations
felt by the finite system, the power-law distribution is d
stroyed, and the population is finally led to extinction. F
smaller systems with periodic boundary conditions this eff
of fluctuations can be avoided by adding extra population
already occupied sites when the total population falls be
its initial value, as explained in the following.

In our simulations the initial population isN2, with one
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counting algorithm@24#. A representative case of a clust
and its boundary, together with the obtained values for
fractal dimension, is displayed in Fig. 4. As already stat
the very nature of the model allows strong fluctuations in
system, and thus in the groups of connected cells. Our m
sures indicate that the fractal dimension of the largest clu
in the numerical simulations—which usually contains fro
102 to 104 cells—varies between 1.15 and 1.35, depend
basically on the size of the cluster, and is in good agreem
with field measures@10#.

IV. DISCUSSION AND CONCLUSION

We have studied in detail—by analytical and numeri
means—a stochastic reaction-diffusion model whose dyn
ics is essentially driven by fluctuations and, as a con
quence, gives rise to strongly intermittent patterns both
space and in time. The processes that govern its evolutio
namely, diffusive transport and a kind of autocataly
reaction—can be identified with the basic mechanisms
derlying human urban development. We have thus compa
the statistics of the spatiotemporal structures generated

FIG. 3. Exponential decrease in the urbanization probab
from the compact city core. The function is averaged over m
independent realizations. The variabled represents the distance, i
lattice units, to the most populated cell in every snapshot. In
vertical axis the probability of finding an occupied cell at distancd
is represented.
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the model with those observed in urban settlements and h
found very good agreement in the exponents of the resul
power-law population frequency of cities. Other quantitie
such as the distribution of city areas, the decay of popula
density, and the fractal dimension of city boundaries, ha
also been successfully compared. Our main quantitative
sults are summarized in Table I.

The exponent of the population frequency observed
real demography appears to be extremely uniform: it is in
pendent of specific social, economical, or political~present
or past! conditions. This suggest that a successful model
the processes that lead to this kind of universality has to
based on simple and rather general assumptions. We
analytically proven that our model generates the same ex
nent independently of the values of the parametersp, a, and
q that define its evolution. These parameters characteriz
fact particular conditions in the urbanization process. La
values ofp and a should apply to regions with fast urba
dynamics, such as in developing countries, whereas s
values of those parameters describe slowly varying dem
raphy. In real situations, of course, the processes that go
urban evolution are expected to be modulated in time bot

y
y

e

FIG. 4. Fractal dimension of the boundary of a typical lar
cluster. In the example displayed, the slope isD'1.3. A systematic
study of many different realizations of the model~for random pa-
rameters! returns values of the fractal dimension between 1.15 a
1.35, the higher the dimension the larger the cluster on the aver
d data
TABLE I. Comparison between values for different exponents and functions obtained from observe
and from the analytical and theoretical results of the reaction-diffusion model presented here.

Model Observed data

Global demography z522 zo522.060.1 @5#

City sizes~population! r 521.9060.03 r o522.0360.02 @5#

City sizes~area! s521.9360.03 so521.8060.05 @8#

Population-area law b51.0360.03 bo'1 @10,5#

Urbanized profile Exponential Exponential@8,9#

Dimension of the boundary 1.15<D<1.35 1.2<Do<1.4 @10#
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PRE 58 301INTERMITTENCY MODEL FOR URBAN DEVELOPMENT
short scales—due to rapidly fluctuating factors—and in
long term—as the region under consideration develops
cially and economically. Numerical simulations of our mod
have shown that even whenp anda vary at random in time
the exponent in the population frequency is preserved.
other quantities analyzed numerically—in particular, the d
tribution of city areas—have also been shown to exh
well-defined power-law decays.

Note that the present model does not take into accoun
effects of birth-death events, which could be thought of a
severe limitation to the validity of our results. It can be a
gued, however, that—in real demography—global popu
tion growth becomes really important only when the popu
tion has settled down. Social stability is in fact a necess
condition for substantial growth. This has been the case,
instance, in European populations, where exponential gro
began only when the nucleation of modern cities had alre
initiated @3#. Once a power-law population distribution ha
been established, exponential growth can only shift the
tribution, but does not affect the relevant exponents.

There has recently been an increasing interest in pro
ing generic mechanisms able to explain the ubiquitous
pearance of universal power-law distributions in physic
biological, social phenomena@4,12#. These mechanism
range from self-organizing evolution to purely stochas
multiplicative processes. In this paper we have shown
connection with a specific problem in the area of global
ciology, that models driven by stochastic processes can
isfactorily explain such universal laws in real systems.
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APPENDIX A

When restricted to local reactions, the multiplicative s
chastic process defined by Eqs.~1! and ~2! reads

n~ t11!5H ~12q!p21n~ t !, with probability p

q~12p!21n~ t !, with probability 12p.
~A1!

This linear stochastic evolution equation is readily solv
For the initial conditionn(0)51, the possible values ofn(t)
are

nk~ t !5S 12q

p D kS q

12pD t2k

,

with probability pk5C~ t,k!pk~12p! t2k, ~A2!

for k50, . . . ,t, whereC(t,k)5t!/k!( t2k)!.
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The indexk acts here as a parameter labeling the val
of n(t). From Eq.~A2!, it can be expressed as a function
n and t as

k5A ln n1Bt, ~A3!

with A5$ ln@(12q)(12p)/qp#%21 and B5A ln@(12p)/q#. In
addition, for larget and intermediate values ofk, the prob-
ability pk can be approximated by a Gaussian function:

pk5
1

Aptp~12p!
expF2

~k2pt!2

tp~12p!G . ~A4!

Now, the probability distribution forn, f (n), can be obtained
from the relationf (n)5pku]k/]nu. Taking into account that
]k/]n5An21, we get

f ~n!5
uAun21

Aptp~12p!
expF2

~Aln n1Bt2pt!2

tp~12p! G , ~A5!

namely, a log-normal distribution forn with a parametric
dependence on time@cf. Eq. ~4!#. As time elapses, the qua
dratic exponential in this distribution becomes broader a
broader and, simultaneously, its maximum shifts at cons
speed. ForuA ln nu!u(B2p)tu, i.e., for n!exp@u(B2p)/Aut#,
the exponential is practically constant as a function ofn and
the power-law approximationf (n);n21 holds. The range
where this approximation is valid grows thus exponentia
with time.

APPENDIX B

For q→0, our reaction model with global diffusion, Eq
~7!, becomes

n~ t11!5H An~ t !1a, with probability p

a, with probability 12p,
~B1!

with A5(12a)/p.1. The solution to this stochastic linea
nonhomogeneous evolution equation gives, for the poss
values ofn(t),

nk~ t !5a(
l 50

k

Al5a
Ak1121

A21
,

with probability pk5~12p!pk, ~B2!

for k50, . . . ,t21 and

nmax5At1a
At21

A21
, with probability pt. ~B3!

Note thatnmax.nk for all k.
As in Appendix A,k plays here the role of a paramet

labeling the values ofn. In terms ofn it reads

k5
1

ln A
lnS A21

a
n11D21. ~B4!




