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Mutual synchronization and clustering in randomly coupled chaotic dynamical networks
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We introduce and study systems of randomly coupled maps where the relevant parameter is the degree of
connectivity in the system. Glob&lmost) synchronized states are foufequivalent to the synchronization
observed in globally coupled mapsntil a certain critical threshold for the connectivity is reached. We further
show that not only the average connectivity, but also the architecture of the couplings is responsible for the
cluster structure observed. We analyze the different phases of the system and use various correlation measures
in order to detect ordered nonsynchronized states. Finally, it is shown that the system displays a dynamical
hierarchical clustering which allows the definition of emerging grapB$063-651X%99)04908-9

PACS numbds): 05.45~a, 05.20--y, 05.90:+m

I. INTRODUCTION elements complements the previous approach and has pro-
vided a better understanding of the collective behavior dis-
Since their introduction in 19891,2], globally coupled played by large ensembles of regularly connected chaotic
maps(GCM) have turned out to be a paradigmatic exampleoscillators. The stability of the synchronous state can be in
in the study of the emergent behavior of complex systems athis case easily quantified by means of the transverse
diverse as ecological networks, the immune system, or ned-yapunov exponenk, , which changes sign in a blow-out
ral and cellular networks. It has been shown that mutuabifurcacion[14] and makes the synchronous state unstable.
synchronization of chaotic oscillations is a robust propertyNear the bifurcation, on-off intermittencyi5] and riddled
displayed by GCM2,3]. Effects of mutual synchronization basins of attractiof16] are observed. Much attention has
are also known for coupled chaotic oscillators with continu-been devoted to the dynamical properties of systems formed
ous time[4]. A recent study5] of large globally coupled by two coupled, identical chaotic elements7]. The syn-
populations formed by chaotic ‘Reler oscillators has re- chronization properties of two coupled logistic maps have
vealed that mutual synchronization and dynamical clusterindpeen extensively investigatéds].
in these systems are similar to the respective behavior found As the next step towards understanding the synchroniza-
in GCM. Another well investigated class of self- tion phenomena in complex networks, one can consider sys-
synchronizing systems represents lattices of lodally., dif- tems formed by a large number of identical dynamical ele-
fusively) coupled oscillatord6]. Moreover, oscillator sys- ments that are connected by identical symmetrical links but
tems with both local and global coupling between elementsvhere the pattern of connections between elements is ran-
have also been discussgd. A common property of GCM dom. This is the starting point of our paper. In the following
and the other abovementioned systems is their architecturakctions we introduce and analyze what we have termed ran-
symmetry: The pattern of connections of any individual ele-domly coupled mapgRCM), that is, networks of chaotic
ment is identical. This internal symmetry is preserved in themaps connectedsymmetrically at random where the rel-
fully synchronized dynamical states and spontaneously broevant parameter is the average connectivity in the system.
ken when dynamical clustering takes place. Our main result is that mutual synchronization and dy-
The architecture of dynamical networks found in real eco-namical clustering are possible in RCM even when a signifi-
logical or other systems would rarely be so symmetric. Evercant fraction(up to 40—45 % of all potential connections is
in the situations with high connectivity, when the links canabsent. However, the synchronization and clustering phe-
extend to many distant elements, the graph of connectionsomena in these systems are different in certain aspects from
may have a complex topology. The question is thereforevhat is known for GCM. Exact synchronization and the for-
whether and in what form mutual synchronization and dy-mation of identical dynamical states of the elements are not
namical clustering can persist in such complexely connectetbund here. Instead, either one or several compact clouds
networks, lacking a structural symmetry. In this direction, (fuzzy clustersare formed. These fuzzy clusters are dynami-
among the few cases already explored we can mention @l objects which split into subclusters or join other groups
layered system of identical random neural networks withof elements. Such dynamical hierarchy of clusters is almost
partial (though regular connectivity among layerd8], never completely fixed in time. A closely related effect is
coupled lattice maps with connections extending further thathat the asymptotic dynamical behavior in RCM is never
to nearest neighbof9], as well as coupled lattice oscillators sensitive to the initial conditions. However, the architecture
in two-dimensiong$2D) with different coupling schemd40]  of a particular network may bias the synchronization process
or a model ecosystem with partial connectivityl]. More  and make certain cluster distributions more favorable. The
recently, ensembles of nonlinear oscillatpi®] and GCM  role of the network is particularly evident when the system is
[13] with random interactions and variable symmetsill small[N=0(1)]: In this case, the synchronization proper-
globally coupled have also been analyzed. ties of the system are strongly dependent on the particular
The analysis of systems formed by few coupled caoticarchitecture, and graphs with the same connectivity might
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have very different collective behavior. We will show that mation holds, the behavior of this system would therefore be
only in the thermodynamic limit do the synchronization equivalent to the behavior of a GCM with coupling intensity
properties of RCM become equivalent to the globallye.
coupled case. In this paper we investigate differences in the behavior of
In the next section we introduce the model and describ&sCM and RCM with large, but finite numbers of elements.
its dynamical behavior. In Sec. Ill the synchronous and théne work with the logistic mag(x)=1—ax? and use values
partially ordered phases of the system are quantitativelpf a such that the dynamics of a single map is chaotic. Our
characterized by computing properties such as the mutualumerical simulations are performed for graphs with sizes up
information and two order parameters of the synchronizationo N=2048 elements and with connectivities in the interval
transition. A more detailed statistical investigation is then0.5<v<1. Such graphs have been randomly generated by
performed in Sec. IV where distributions over pair distancesndependently choosing every possible connection with the
are constructed. Section V is devoted to the analysis of theame fixed probability. We have checked that thus generated
emergent cluster structure in partially condensed phases. graphs remained fully connected, i.e., they could not be fur-
complement to the latter section is the Appendix, where arther separated into two disconnected parts.
example of a small system with varying network architec- Considering that we wish to compare the behavior of
tures is considered. Finally, in Sec. VI we discuss our resultsSRCM with that of GCM, it is of interest to begin by briefly
come to the conclusions and outline future extensions of thisecalling the dynamic behavior of GCM when the coupling
study. strengthe is decreased from 1 to @ee Ref[2]). When, for
example,a=2, the synchronous phase in GCM is main-
Il. THE RANDOMLY COUPLED MAPS tained untile= 0.5, where it destabilizes and is substi_tuted by
the so called “glassy phase.” In Kaneko’'s terminology,
We begin by exactly defining what we have termed ran-‘glassy” means that the final attractor is sensitive to the
domly coupled maps. Instead of a globally coupled systeminitial state of the maps, and thus a multiplicity of attractors
this will be a network of connections characterized through as to be found in this phase for the same parameters value.
random matnxTIl , the elements of which are eithe@hen  For e~0.33, an ordered phase sets in: The sensitivity to the
a connection between mapsand| is absentor 1. In our initial conditions disappears and the elements group together
analysis, we assume that the matrix is symmetric, g., in only 2 or 3 different clusters. A narrow intermittent band
=T;, and all diagonal elements are set to U;; €0). An  in 0.21<e<0.25 preceeds the turbulent phase, in which the
important property of such random networks is their averag&umber of clusters in all the attractors is of ord&fN).
connectivity We first examine the possibility of full mutual synchroni-
zation in RCM. Such full synchronization takes place in
1 N GCM when the coupling strength exceeds a critical value
y=——— E Tij - (1) [3]. In the fully synchronizedcoherenk regime the states of
N(N—1) iT=1 all maps in GCM are identical. Our analysis reveals that such
exact synchronization does not occur in RCM. However, at
Hence, each element will be on the average connected tsufficiently high coupling intensities, all elements move to-
v(N—1) elements in the system. if=1, the system is glo- gether in a single compact cloud fuzzy clustex, so that the
bally coupled and our system reduces to this known systemypical distances between their trajectories remain below
The collective dynamics of RCM is defined as Ix'(t)—x/(t)|<10"8 (this is the single precision for real
numbers in our computerThe fuzzy synchronous phase is
maintained for a certain range of values of the coupling
x(t+1)= ( 1--— —2 Tjj ) fIx'(t)] strengthe, and then a sudden transition to an asynchronous
state(see the discussion belgus observed. Figure 1 shows
how this transition proceeds for a randomly chosen network
2 TIJf[X 7, (2)  with »=0.8 andN=50 elements. For comparison, we show
TUN-T 1 in the same figure the respective behavior of GCM. While
for GCM the turbulent-ordered-glassy-synchronous sequence
wheree specifies the strength of the coupling difet) is the  of phases is clearly seen wherlecreases, only the synchro-
individual map. This collective dynamics can thus be underhization breakdown for RCM is apparent.
stood as involving diffusion on a graph: Each node in the We have studied how the synchronization threshold in
random graph diffuses a certain fraction of matefiialstat¢ ~ RCM depends on the mean connectivityof the network
to the elements to which it is connected, and receives a con&nd on its sizeN. We accept that the elements in a given
parable influence from them. The intensity of coupling be-network are synchronized if the average distaddsetween
tween the network elements is specified by the parameter pairs of elements during an intervAt is smaller than 108,
(we have the constraint<v). Nevertheless, the combina- after a transient is discarded, that is,
tion €/ v, which can be interpreted as a diffusion coefficient, L
plays an important role. Note that in the limiN—o all - i - g
RCM with a given connectivitw become statistically iden- - N(N_l)At<iEj> % X(O-X(1)]<107 )
tical. Indeed, in this limit each element will have the same
numbervN of connections, although still it is linked only to The simulations begin at a value e« €* which is stepwise
a randomly chosen subpopulation. If the mean-field approxiincreased in amounts 16 until the condition(3) is fulfilled.
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FIG. 1. Numbers of clusters as functions of the coupling FIG- 3. Threshold to synchronization. Small solid circles are

strengthe for RCM of sizeN=50 and connectivity=0.8 and for  cfitical thresholds for systems of si#¢=50 and big open ones
GCM (v=1) of sizeN=50. In the RCM case, two elemeritand correspond toN=500. We restrict ourselves to values<v, as

j are considered to belong to the same clustefxift) —xI(t)]| discussed in the main text. The like=1/2 is the stability threshold

<1078, In the GCM case, two elements belong to the same clustefor GCM, and acts as a lower boundary for RCM.

if their states are identical. _ _
Large open circles are averages over 10 to 30 independent

We have also observed that immediately prior to the Syn_graphs, and are represented together with the dispersion

chronization transition, the distandeundergoes a sharp cut- . 12
off and afterwards stabilizes around small values which de- 2 [e]-*(N)— e*(N)]?
]

pend on the system sizal (s in the synchronous phase a Ae*(N)=
decreasing function dfl). In Fig. 2 the distance to the syn-
chronization threshold of GCM is shown as a function of the ] ) )
network size when the connectivity is kept constamt ( I the thresholdserror bar$. The index stands ford|ﬁe(ent
—0.9). Numerically, we obtain Eetworks formed by the same number of elemewtsvhile
€* (N) is the average value for each size. Small solid circles
represent the synchronization threshold for each of these

[N(N—1)]

1 graphs. The error in the determination &f for each net-
6*_6’écm:\/—ﬁ- (4 work is 10°3. The solid line in the main plot has slope
-1/2.
As larger networks are considered, the dispersion
10° , . , , A€e*(N) in the synchronization thresholds for different net-

works with the same connectivity becomes smallase).
Our numerical results point to a dependence of the form
. Ae*=N"1. The fact that the dispersion in the valuesedf

4 tends to zero in the limiN—c for a fixed v indicates that

i o ] RCM are characterized by self-averaging quantities. In view
of these results, the RCM should be well described by a
10° ] mean-field approximation, thus by GCM, in the limiN
—o0. In fact, the numerical simulations agree with this pic-
ture. In the opposite limit, when the number of elements in
the systems is smallN=0(1)], the threshold at which the
group first synchronizes is very sensitive to the particular
way the maps are connected, as can be already seed for
<64 in Fig. 2(see also the AppendixFigure 3 depicts the

L
1

10 synchronization threshold for systems with=50 and N
N =500. Every point corresponds to a fixed network with con-
FIG. 2. Dependence of the synchronization threshkdldn the nectivity given in thex axes and the critical value™ in the
. . axes.
network sizeN. The open circles correspond to average values of/

the critical coupling intensitg* for networks of sizes ranging from The SynChronlzatllon threshold for G.C.M has previously
N =22 to 21 with the same connectivity=0.9. The solid line has P€€N exactly determing@]. WhenN—- it is given by the
slope— 1/2. In the inset we show the dispersion in the values®of ~ cONdition =gy where the critical coupling is obtained
as a function of the system size. The solid line has slepeInthis ~ from A +In(1— egcy) <0 and\ is the Lyapunov exponent
case,a=2 and thusefcy=0.5. of the single logistic map. It can be expected that the syn-
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FIG. 4. Divergence in the transient tintg when approaching pling intensity e for a GCM (v=1) of sizeN=200 (dashed ling
. s oo
the critical pointe™ for a randomly chosen networ_k \_N'm_ _50 and  and three randomly chosen networks of the same size, connectivity
v=08 (;qu_are}_san_d for the G(_:M of the same S_'mle‘j C'rc!eg' v=0.8, and values o as shown. The sequencgb were taken
ghelsolldhllne |n(z)|catefs The dlvergvfsncellaw }N'ﬂ* 1f. Thﬁ '?;g't/l after discarding a transient of 1@teps. The GCM data are addi-
isplays the number of clusters as function of time for the attionally averaged over 100 random initial conditions, and the RCM

€=0.7. over 25 independent graphs.

chronization threshold for RCM approaches the lineit Dy i i
= egom Whenv—1, for any value ofN, and also whervN Hi(2)=— 261 P(S)INP(S). ®)
—oo, and independently of, as has been discussed. It can &0
be seen from the numerical results rgpres_ented in Figs. 2 anf a similar way we define the joint entropy for each pair of
3 that the valuee=0.5 (for a=2) yields indeed a lower maps,
estimate for the synchronization threshold in RCM.

The system falls into the synchronous phase after a tran- - o o
sient of diverging length when approaching the synchroniza- Hiz)=— > > P(S.,8)InP(S,S) (6
tion thresholde*. Figure 4 shows the dependence of the §=01s,=01
transient time, on the distance— €* to that threshold. The
insert shows the dynamics during a typical transient. We seand finally the mutual information farandj is given by
that strong fluctuation@ntermittency are accompanying the - ' . -
convergence process. Representing the dependence of the M(Z)=H'E)+H(Z)-H"(X). 7
transient time in the form o« (e—¢€*) "7, we find that the
exponentr~1 is typical both for RCM and GCM. More The mutual information is a good measure of correlations,
precisely, a least squares fit to numerical data retugpg,  ©-9., it achieves maximal values near critical po[2@]. In a
=0.997(3) andrrcy=0.9833), and thecritical threshold cqntgxt closer to ours _it has been shown to accurat_ely dis-
values to synchronization aw,,=0.5 andeX.,/r~0.87  Climinate among the different phases of GE#]. An in-
for the particular graph of Fig. 4. teresting property of'" is that it is practl_ca_llly precision in-

Below the synchronization transition, the glassy phase i§lépendent, due to the rough coarse graining of the dynamics.

observed in GCM. The dynamical behavior of RCM in the As an illustration of the sensitivity of this measure, let us
region e< €* is investigated in the next section. discuss which values df' are expected in two dynamically

opposite regimes, i.e., for the synchronous and the turbulent
phases. In the coherefgynchronougphase where the states
Il MUTUAL INFORMATION AND THE TWO ORDER of all elements are identi(i:al, the _sequensésir.e.the same
PARAMETERS for all of them, thereforeH (E_)_=_ H!(X). In addition, since
the two chosen maps are visiting the same points, we have
We have used three different measures of correlationsi’/=H' and thusl'/=H', reflecting the trivial nature of the
among elements to check if the phase wéttie* has still  correlations. Whera=2, because of the symmetry in the
some intrinsic order. The first of them is theutual informa-  invariant measure of the logistic map for this paramésed
tion between two mapsandj, 1''(Z). To define this quan- noting that the synchronized system is equivalent to the
tity, we introduce a partition of the phase space of the logissingle map the mutual information achieves its maximum
tic map in the following way. If the state of the chosen value. In fact, under these conditionB(0)=P(1)=1/2,
element is x'(t)=0 then it will be assigned a value 1, and 0 thus maximizingH'=In2 and alsol"=In2. For parameter
if x'(t)<0. This generates a sequence of bits in a certaivaluesa# 2 the invariant measure is not symmetric around
time interval S;e £ ={0,1} which allows the calculation of 0, P(0)#P(1) and hencé' <In 2 typically. Nonetheless, as
the Boltzmann entropy for thgh map[19], can be seen in Fig. 5, the synchronous state is clearly de-
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tected through this measure. In the turbulent pliassuming

that the elements behave independently and are not corre-

lated we will have agairH'(3) =H!(3), but now the joint
probabilities factorize,P(S},S,)=P(S)P(S,,) and H'
=2H'. In this phase we therefore expeét~0 irrespec-
tively of the parametea. In the intermediate cases, where

some correlations are present, the mutual information should

take values between the former two limitss0i<In 2.
To determine the mean mutual information

> 1

<)

('”>=m< tS)

for a network with a given matri¥;; , we take an average of
the mutual informations for all possible pairsj( for long

enough sequences to ensure the stability of the probabilities

(typically At=10°—10* after discarding a transientFigure

5 shows the typical computed dependences of the mean m
tual information(I") on the coupling strength for RCM in
the casesa=2, 1.8, and 1.6, and GCM. At low coupling
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intensities, the mutual information is zero, indicating the ab-

sence of correlations in the turbulent phase. It starts thento " e ) _
In GCM this maximurﬁ””Ct'O”S of the coupling intensity for a GCM of sizeN=250 (a)

increase and reaches a maximum.

corresponds to the ordered phase. When the coupling inteff

sity is further increased, the mutual information falls
down—at the onset of the glassy phase for GCM—before i
finally increases and reaches a stable high value in the sy

pling e. For low enoughv, synchronization is no longer
possible(see also Fig. B Thus, though by direct counting of
the number of clusterd=ig. 1) we could not see any ordering
in RCM for e<e*, the present analysis based on the mea

gion.
Further characterization of different RCM phases is pro
vided by twoorder parameter$5]. We examine all different

N(N—1)/2 pairs of elements in the system and count how,

many of them are at a distance shorter than a fixed give
precisiond. The first order parametel ) is defined as

r(é)= > O[s—|x'()—x (0],

i<j)

2
N(N—1) ©

where O(x) is a step function,®(x)=0 for x<0 and
®(x)=1 for x>0. The sum is taken over all possible or-
dered pairgi<j). The second order paramet&®) is given

n
chronous state. The effect of a decreased connectivity trans-
lates into a shift of the phases to higher values of the cou

FIG. 6. Order parameters(dotted line$ ands (solid lineg as

nd for a randomly chosen netwofthe same as in Fig.)%f size
N =250 and connectivity=0.8 (b). The employed precisions are

Pocw= 10" and 8gey=10"2. Averaging over 100 random initial

conditions is additionally performed for GCM.

We have computed the order parameters as functions of
the effective coupling strengtlf » for RCM and the respec-
tive GCM using varying precisioné. It was found that the
results for GCM only weakly depended on the precision in a
wide interval 10%°<5<10"3. The curves shown in Fig.

- . 76
sure of the mutual information clearly shows that the net-6(a) for GCM have been calculated usig=10 °. We see

works have intrinsic dynamical organization also in this re-

that the order parameterfor GCM reaches, as should be
expected, the value= 1 in the fully synchronougcoherent
state at high coupling intensities. However, a large relative

numberr of synchronous pairs is also found in this case at
Jower coupling intensitieg in the ordered phase. Moreover,
;g]he second order parametein this phase is close to 1 indi-
cating that almost all elements belong to one of the synchro-
nous clusters.

In contrast to globally coupled systems, dynamical clus-
tering and synchronization in RCM is best resolved when an
optimal small precision is employed. The plots shown for
RCM in Fig. 6b) have been therefore constructed for the
optimal precisiond=10"3. We see that in the regios
> ¢e*, where fuzzy mutual synchronization is observed, both
order parameters reach their maximal possible values

by the relative number of elements having at least one othe+ 1. Below the synchronization threshold, both order param-

element at a distanag< 6.
In globally coupled systems the synchronization pro-

eters rapidly decrease but then show a maximum. For small
coupling intensities, the order parameters become very small

ceeeds until all the elements in the same cluster asymptotia somewhat larger initial level afis explained by the fact
cally reach identical dynamical states. In this case, one cathat § is larger here than in Fig.(8 and therefore a small
choose the highest available precision in the calculation ohumber of pairs separated by the distaids found already
the two order parametefg actual simulations it is limited in the turbulent phase, for the random independent distribu-
by the computer precisignAs we have already noted, this tion over the one-particle attracfor

absolute synchronization does not occur in RCM. Instead, Thus, the behavior of the order parameters is again quali-
only clusters of elements having close dynamical states aratively similar in RCM and GCM. We can conclude that
formed here. Therefore the choice of the precisidibe-  within a certain interval of coupling intensities, dynamical
comes important when networks are considered. clustering of elements occurs in these systems. The differ-
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pling intensities(a) €=0.1, (b) €=0.25, (c) €=0.35, and(d) €

FIG. 7. Normalized histograms of distributions over pair dis- —0.45. In casegb) and(c) the elements belong to the same cluster.

tancesd;; for different coupling intensitiea) e=0.1, (b) e=0.25,
(c) €=0.35, andd) €= 0.45 for a randomly chosen network of size
N=1000 with connectivityv=0.8. The histograms are obtained by about dynamical properties of the clusters. To analyze the
counting the numbers of pairs with the distances falling inside subunderlying dynamical behavior of the system, we have plot-
sequent intervals of widthd=0.01 at a fixed time momert  ted in Figs. 8a)—8(d) the typical time evolutions of the dis-
=200 after the transient. The vertical and horizontal axes have thtance between two elements for the histograms displayed in
same scales in all these histograms and stand for the probabilifigs. 7a)—7(d).
density and for the distance between states, respectively. In the turbulent phasgFigs. 1a) and &a)] the pair dis-
tance evolves in an irregular way and shows large variations,
ence is that, in the case of RCM, the clusters are fuzzy anes it can be expected for two independent logistic maps. At
can therefore be identified only when a sufficiently low pre-the beginning of the clustering phaleigs. 1b) and 8b)],
cision is used. One further difference is that for RCM thethe elements tend to stay much clogeotice the change in
order parameters do not fall down so sharply immediatelythe vertical scaleand weak aperiodic oscillations are ob-
below the synchronization threshold and a significant numserved.
ber of elements still has close neighbors in this region. For coupling intensities near the top value of the mutual
information[Figs. 7c) and &c)], the elements lock into pe-
riodic trajectories. Examining the trajectories of individual
elements, we have seen in this case that all of them are now
periodic, though different for different elements of the sys-
Additional information about the structure of different tem. Thus, the system acquires rigid internal organization
phases in RCM is provided by histograms of distributionsand falls into a state of frozen disorder. The pair distance
over pair distances. Such histograms are constructed Ryetween two elements in a cluster shows in this case purely
counting at a given time moment the numbers of pairg)(  periodic variation. The clusters are rigid and no exchanges
with distancesd;;=|x;—x;| lying within subsequent small among them are observed. Figurg®)7and 7c) represent
intervals Ad. Figure 7 shows these normalized histogramstwo elements belonging to the same cluster. The distance
for one fixed randomly chosen network with a large numbebetween intercluster pairs shows analogous behavier,
of elements l=1000) at several coupling intensities In ~ weak aperiodic oscillations or periodic dynamiedthough
the turbulent phase, a flat distribution corresponding to althen the typical separations are of ord(1).
most independent elements is fouffeig. 7(a)]. When the An interesting dynamical behavior is observed for higher
coupling intensity is increased, some inhomogeneities stadoupling intensities, preceeding the synchronization transi-
to develop in the distributiofthe mutual information and the tion [Fig. 7(d)]. Now the elements alternate between short
order parameters also begin here to incriablee peaks ap- periods of partial synchronization and excursions away from
pearing later in the distributions indicate the onset of dy-the incipient clustefFig. 8d), note the increase in the ver-
namical clusteringFig. 7(b)]. In the situation shown in Fig. tical scald. This form of behavior is in fact very reminiscent
7(c) the system has two fuzzy clusters. When the couplingpf on-off intermittency{15]. Such intermittency can explain
intensity is further increased, the cluster structure is dethe origin of the broad shoulder in the histogram of Figl)7
stroyed and the distribution characterized by a broad maxik is formed by the elements that temporarily find themselves
mum at zero distance between elements is forrieid.  during a large excursion from the central cluster.
7(d)]. As the coupling intensitg grows, this maximum gets The previous analysis has been also carried outafor
increasingly narrow until the synchronous state is reached at 1.8. The above described picture is also obtained for this
e=€"*. other value of the parameter in the logistic map and for cor-
The distributions over pair distances in Fig. 7 correspondesponding coupling strengtles=0.1, 0.15, 0.25, and 0.29.
to fixed time moments and therefore cannot tell us anything@’his sequence is coherent with the different phases detected

IV. DISTRIBUTIONS OVER PAIR DISTANCES AND
DYNAMICAL CLUSTERS
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by the mean mutual informatiofi'!) and represented in Fig.  10® ——— ——————r
5. !
The formation of clusters with periodic dynamics has pre- 100 @
viously been observed in the ordered phase of globally 10 f
coupled logistic mapk3]. As the coupling intensity is further  10™" [
increased, this ordered phase is replaced in this system by thg
glassy phase where the system has a large number of differ- _,
ent attractors and its asymptotic dynamics strongly depend10
on the initial conditions. The glassy phase of GCM preceeds
the final transition to the fully synchronous coherent state.
An important result of our study is that the glassy behav-
ior was absent in the studied randomly coupled maps. When
dynamical clustering was observed in this system, the cluster
structure did not depend on the initial conditions and was
completely determined by the architecture of the underlying s s . ‘
graph. Moreover, the phase of dynamical clustering is sepa- 00 02 04 06 08 10
rated in RCM from the synchronous phase by the region of d
intermittent regimes. FIG. 9. Normalized histograms over pair distances for a GCM
Our interpretation of this finding is that the quenched dis-of size N=50 and two different initial conditionga),(b) for the

order intr(_)duced by rand_omly deleti_ng some Conr_]eCtionS—same GCM in the presence of an additidgashed lingor multipli-
transforming the GCM into RCM-is to a certain extent cative(bold line) noise of intensity’ =10~ (c), and for a randomly

equivalent to the introduction of a small amount of dynami-chosen network of the same size with connectivity0.8 (d). The
cal noise (either multiplicative or additivein a globally  coupling intensity ise=0.45 in all these plots; time averaging is
coupled systenj22]. We have checked this conjecture by additionally performed.

constructing the distributions over pair distances for GCM

and RCM in the glassy and intermittent phases, respectivelyngiance, it should be clear that the fixgdough disordered
Moreover, we have also computed similar distributions forgyctyre of the network plays the main role. In this sense, we

GCM where an additive or a multiplicative noise have been,aye analyzed the dynamical behavior of the clusters by

mcluded. The dynamical evolution of the noisy GCM is de'measuring in a fixed network how many elements belong to

fined through a certain cluster and how many clusters are formed at each
time step. A clusteC,,(6;t) for a given precisions and at

N
Xi(t_l_l):(l_e)f(xi(t))_i_% 2 FOA(1)+ Zg(xi(1), time t is formed byk,, elementsm=1,... M such that all
j=1

of them have at least another element of the cluster at a
(10)  distanced< 4, that isd=|x;(t) —x;(t)|<4, Vi and somg
. . e Cy, in order to say that alsbe C, .

where g(x'(t))=r;(t)x'(t) in the multiplicative case and In Fig. 10 we represent the size of all clusters in a net-
g(x'(t))=r,(t) in the additive case. We have used a smallwork with N=50 elements as a function of tinteor a fixed
amplitudeZ= 103 for the noise, and;(t) is a random num-
ber between—1 and 1. It is chosen anew for each map at s,
each time step.

Figures 9a) and 9b) show in a logarithmic scale the his-
tograms of distributions over pair distances in the glassy
phase of the globally coupled logistic map under two differ-
ent choices of the initial conditions for the same coupling
intensity. We see that the resulting distributions are very dif-
ferent. Note that both distributions have been averaged over
time, so that the peaks and irregularities in these figures re-
veal the persistent structure of the underlying attractors. Fig-
ure 9c) shows how these distributions are influenced by in-
troducing into the GCM a weak additiv@lashed ling or
multiplicative (bold line) noise of intensityy =102 accord-
ing to Eq.(7). The noises wash out the fine jagged structure
of the distribution and, more importantly, make it indepen- s
dent of the initial conditions. The resulting distributions be- 100 300 500
come then clearly similar to the respective distribution we t
obtain at the same coupling intensity for RCM, Figd9 FIG. 10. Size and stability of synchronous groups in the clus-

We would like to emphasize that this parallelism betweenering phase. The dynamical behavior of a fixed network With
quenched disorder and dynamical noise might hold in the-50 elements and'=0.8 is analyzed for coupling strengths

intermittent phase, but of course the mechanisms leading te 0.25 (a), e=0.28 (b), e=0.3(c), ande=0.32(d). The precision
the dynamical behavior observed in other phases cannot hiein this cases=0.1. Weakly coupled elements coexist with long-
(at least solelyascribed to noise. In the clustering phase, forlived clusters which often split into smaller subgroups.
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precisiond=0.1). Four different values of in the clustering
phase have been chosen. In the first dleig. 10a), €
=0.25], the elements tend to cluster but the groups are still
relatively unstable. A closer inspection of the clustering dy-
namics reveals that a group of 19 elements keeps stable in
time, while another cluster containing the 31 remaining ele-
ments splits often in subgroups of sizds,14, (18,13, or
(20,10 among others. If the coupling strength is increased,
also the stability of the clusters increases, and their average
lifetime becomes longer. In Fig. 1), for e=0.28 we ob-
serve that, in fact, larger and more stable clusters are formed.
Now the elements are divided into a cluster with 20 elements
and a second group with 30 that often splits into two sub-
clusters with 27 and 3 elements, respectively. Some irregu-
larities in the dynamics are also found. In the hard-locking
phase for this networkFig. 10(c), e=0.30] two stable clus-
ters with 24 and 26 elements are formed. As already dis-
cussed, the maps display periodic trajectories in this narrow
parameter region. For a slightly larger 0.32, in Fig. 10d),
we see a first stable group with 27 elements and a second one
with 23 including a weakly coupled magpvhich periodically
leaves the clustgr FIG. 11. Hierarchical structure of dynamical clusters for a ran-
We have observed that the transient time required for th@omly chosen network of sizd=50 with the connectivityy=0.8
system to fall into the clustering phase increases with thet ¢=0.23.
increase of. At the same time, it is seen that elements have
a trend to condense in a single group, as revealed by thelements which are more strongly connected than on the av-
presence of some time steps where the cluster size ejuals erage. Respectively, when the relative connectivity between
This is not found to happen at the beginning of the clusteringwo clusters is decreased"ec}'< 1), this shows that the ele-
phase, for values 0&€<0.27. Finally, fore~0.35 (in the  ments belonging to these two separate clusters are less con-
network of Fig. 10 the maps do not form clusters any more nected than on the average aride versa
and the intermittent phase begins. We can also define the averaigerclusterrelative con-
nectivity of the entire network

V. PARTITIONS INTO DYNAMICAL CLUSTERS M

: 1

In this section we more closely examine the structure of vg}}ef=m > (13
the dynamical clustering phase in RCM. In this phase, ( ) n1<Tinzl
groups of maps moving together in a robust way and forming,q jts averagéntraclusterrelative connectivity
long-lived clusters have been observed. The emerging cluster
structure is biased by the connection patterns of the underly- _ 1 M
ing network. To demonstrate this, we introduetative con- vg‘;;azm > vn. (14
nectivitiesthat are defined below. m=1

Let us suppose that at timeand with precisiond our
system separates intM clusters, C(5;t), m=1,... M,
each of which containing,, elements. The relative connec-
tivity inside a clustem is then defined as

To characterize the cluster structure of the partially or-
dered phase, we fix the coupling intensétand consider the
state of the whole system at a given time moment. By vary-
ing the precisiond, we obtain a hierarchy of cluster parti-

1 tions, as seen with different resolutions. For each resolution
V?ﬁ:W E Tij, i,jeCn, i#j, (1D level, its relative connectivities are then calculated. Figure 11
vkm(km—1) @) presents the emerging hierarchical structure of dynamical
cluster partitions for a system &f=50 elements with cou-
where the sum is taken over all pairs of elements belonging,”ng strengthe=0.23 at three different precisions The

to this cluster. The relative connectivity between two differ- nympers between brackets correspond to the number of ele-

ent clusterd andn is given by ments in each particular cluster. The numbers inside the clus-
L ters are their relative connectivities and the numbers on the
n_ ; : links between the clusters yield the relative connectivity be-
Vg =—— T, ieC, jel,. 12 i i .
et pkik, <.EJ> . 1 1€6n (12 tween them. Though this pattern refers to a particular time

moment(after a long transient it remains fairly stable in
Thus defined, the relative connectivities are equal to 1 if theime. We see that, as the precisiéis improved, the clusters
characteristic connectivity inside a cluster or between twasplit into smaller subclusters, revealing a hierarchical treelike
clusters are exactly the same as the average conneativity —structure[23]. It can also be observed in Fig. 11 that the
the entire network. Positive deviations of the connectivityrelative connectivities inside a cluster exceed 1, whereas the
inside a cluster gg;>1) indicate that this cluster contains relative connectivities between the clusters are typically
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35 fied and compared with their counterparts in GCM. The es-
sential differences have been noticed in the cluster structure
30 ¢ and in the dynamics, as well as in the dependence on the
initial conditions. A rich clustering structure, depending on
2 2 the network architecture, was observed in RCM. The analog
§ 20 | of the glassy phase of GCM was, however, not found in the
> investigated randomly coupled maps, i.e., we have not seen
2 15| that the final attractor depended on the initial conditions for
.§ any set of parameters. In this sense, the quenched disorder of
& 10| the random network appears to play a role similar to that of
noise in this phase. It might also be that the transition from
5| synchronization to the intermittent phase in RCM would ad-
mit a characterization in terms of a blowout bifurcat{dd],
) and that the intermittent phase that we observe immediately
0.75 1.25 after the synchronous state be in fact a case of on-off inter-

mittency. This picture would be consistent with our numeri-
cal results and with the fact that the disorder in the network
architecture destroys the degeneracy of the dynamical matrix
in GCM [2] and generates a whole hierarchy of Lyapunov
exponents.

Though our investigations were made only for networks
formed by coupled logistic maps, similar results would prob-
ably hold for networks made of other chaotic maps or ele-
ments with continuous chaotic dynamics. Indeed, the behav-
ior in globally coupled logistic maps strongly resembles

FIG. 12. Statistical distributions over intraclusteolid line) and
intercluster(dashed ling effective connectivities in the clustering
partitions in an ensemble of 46ndependently generated random
networks of sizeN=250 with mean connectivity=0.8 and cou-
pling strengthe=0.3. In this case, we have taken the precisibn
=0.1.

smaller than 1. This indicates that the partition into dynami-

cal clus_ters is biase_d by the pattern of conn_ections in th9\/hat is found in various globally coupled populations of

underlying network, i.e., the elements belonging to a same - otic dynamical systenis.g]

cluster would generally have more connections inside this The systematic study of RCM implies the analysis of the
cluster than with the elements belonging to other dynam'caﬂ)ehavior of the system under the change of four relevant

cIu_:Is_tersH K mor rately thi tion. we hav | narameters: The average connectivity the coupling
0 check more accurately this suggestion, we have calc trengthe, the parameter of the individual map and the

. . eoage tra
la}rt]i‘rj intercluster and intracluster connectivitieg® and system sizeN. Our main interest in this study was to intro-
ver fOr & larger system witlN=250 andv=0.8 ate=0.3  §yce randomly coupled maps and to give some insight into
with the precisions=0.1. These properties were averagedine role of the network architecture in the dynamics. Hence,
over 1¢ independent graphs. The average intracluster conge nave mainly investigated the two parameterand N,
nectivity was in that casévey®)=1.0131), that is, slightly  and reanalyzed the known phases for GCM whevaries
higher than numerically generated average connectivityfrom zero to unity. Many of our investigations were per-
(ve)=1.000q1). Theaverage intercluster connectivity was formed with control parameter=2 of the logistic map. This
(v )y=0.987(1) and thus lying belowves). Figure 12 value is somewhat special, sinceaat 2 the trajectories be-
shows the normalized probability distribution over intraclus-come infinite and the chaotic attractor disappears in a bound-
ter (solid line) and interclustetdashed lingconnectivities in  ary crisis[24]. Other simulations for smaller values of the
the studied ensemble of 1thdependently generated graphs. control parametea show a similar qualitative behavior.
The maxima of the two distributions are slightly shifted. But, In our study, the networks were generated by indepen-
perhaps even more important, we see that the distribution afently choosing with a certain fixed probability the connec-
the intercluster connectivities is significantly broader and hasion between any two elements. Thus constructed, the con-
a wide shoulder extending towards lower connectivities.  nection patterns are random, but statistically uniform. We
have analyzed systems with sizes ranging from a few ele-
ments toN=2!, Generally, the synchronization threshold
depended not only on the system size and on the average
Our numerical analysis reveals that mutual synchronizaconnectivity, but also on the particular architecture of a cho-
tion and dynamical clustering represent a typical and robusgen network. We have seen, however, that variations in the
form of collective dynamics in random networks of coupled synchronization threshold for networks with the same mean
chaotic elements. The mutual synchronization remains posonnectivity became much weaker when the network size
sible when almost half of all potential connections betweerwvas increased, and that the distance to the mean field thresh-
the elements are deleted and the dynamical clustering may lséd given by GCM had the functional formet — egcy)
found even for the more sparsely connected networks. For=N~ Y2 The existence of a universal synchronization thresh-
very low connectivities, we have seen that the system couldld in such randomly generated networks in the limit
no longer synchronize and the dynamical clusters in the par— is thus expected. The statistical uniformity, introduced
tially condensed phase became less stable, i.e., their lifetimeés this paper through the independent choice of individual
were getting shorter. connections, is a special feature that should not necessarily
The different dynamical phases of RCM have been specibe present in complex networks. Natural networks may have

VI. DISCUSSION
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TABLE I. Percent of realization) for the clusterings shown

1 2 1 2 and for each of the networks in Fig. 13.
3 4 2 4 3 II 5 Network Clusters % Network Clusters %
; . 40— A (1,2,3,4,3 5 B (12343 15
(125@4 2 (124903 ®G 1
(1,2 3,45 1 1213 @ (®B 75
A B C D (1.2 34 (5) 59 (1.234(5) 1
turbulent 33 turbulent 215
FIG. 13. Four different possible configurations of a network
with N=5 elements and=0.6. In each graph, favored synchroni- c (1,2,3,4,5 2 D (1,2,3,4.5 4
zations are displayed using the same symbol. a 2 34 '(5) 1 1 2 34 25) 1
. . . 1,34 (2 (5 17 1,2 (3,4 (5 57
various topological structuref25] which can also result ((1 34)4)((; (5)) 05 (i) (;)((3 21)((23) 15
from evolutionary processé&6,27. It would be interesting 1 ’2) ’(3 4)’(5) 0'5 12 3 (’4) 5) 1'5
to see how synchronization and the dynamical clustering ' ' 1'7 ’turbulent 55

phenomena are influenced by such structures. D @ 34 ©)
We have found that the network architecture biases the turbulent 62
partitions of the network into dynamical clusters and deter-
mines interactions between the clusters which lead to their
collective dynamics. This puts forward the taskesfgineer- have systematically investigated their synchronization prop-
ing the networks with the desired dynamical clustering prop-erties for various values of the control paramedeof the
erties. One can apparently design systems that would displdggistic map in the interval from 1.42 to 2 with increment
an arbitrarily chosen partition into several exactly synchro-Aa=0.02 and for the coupling intensity in the interval
nized clustergsee the Appendix The collective dynamical from 0 to » with incrementA e=0.01. In this case we have
behavior can represent an important practical function of &onsidered that two maps are synchronized if they have ex-
network. The evolution of a network, proceeding throughactly the same state. This is now licit because of the high
random mutations, may then be guided towards the optimidegree of symmetry of the networks. The percent of param-
zation of its collective dynamics. Indeed, examples of dy-eter pairs leading to each of the possible clustering configu-
namical networks that evolve to reproduce given temporatations is displayed in Table I. In Fig. 13, elements with the
“melodies” have already been construct@8,29. We want  same symbol synchroniée., they form a clustgmwith the
therefore to emphasize that the evolution of networks camigher probability. Different symbols stand for different
also be steered to reach better synchronization properties efusters. The value of at which the elements in each of the
to approach a certain dynamical clustering structure. networks synchronize can take a wide spectrum of values.
Finally, we note that when the dynamical clustering isFor instance, fom=1.6 it changes from 0.5fcase(A)] to
taking place, coherent clusters can be interpreted as superdé [case(B)] [30]. Moreover, we have found thaf is a
elements that form an emerging dynamical network of anonmonotonic function of, and can be even decreasing
higher structural level. Taking into account the large varietydepending on the graph. HenceNfis small, each network
of clustering partitions and their sensitivity to the coupling has to be treated independenths in the example here ana-
intensity, RCM systems may thus be viewed as a livinglyzed).

space that supports different dynami¢aletanetworks and We see that indeed in the majority of cases the clustering
may retrieve a particular such network under appropriatgartition follows the pattern of connections in the graph.
changes of the control parameters. Moreover, some of the potential highly asymmetrical parti-
tions have never been observiiich as the partition into
ACKNOWLEDGMENTS (1,9, (2,3), (4) for the graph A. This shows that the sym-

metry of connections inside a graph plays an important role
The authors acknowledge interesting discussions wittin the dynamical clustering phenomena.
Damian H. Zanette. S.C.M. gratefully acknowledges the sup- Looking at the graph A, we see that the dynamical equa-
port from the Alexander von Humboldt FoundatiéGer- tions of its elements are not changed under the relabeling
many). (1,2,3,4,5%(2,1,4,3,5), reflecting the symmetry with re-
spect to permutations in the matrik; for this graph. It
APPENDIX seems highly plausible that synchronous clusters would gen-
erally be much easily formed bpdistinguishableslements,

It was earlier noted that the network architecture influ-defined as those whose dynamical equations are identical
ences the critical coupling intensigf at which synchroni- under permutations. This is the reason that allows synchro-
zation first appears and favours certain preferred partitions afization to be of the hard lockingexac} type in this case.
elements into dynamical clusters. In this appendix we anaThe numerical results shown in Table | support this state-
lyze the role of the network architecture in the dynamicalment.
clustering phenomena for small networks consisting of only Consider, for example, the situation in which the clusters
N=5 elements. If the network connectivity is fixed at (1,2, (3,4), and (5) have been formed ifA). Let us call
=0.6, there are just four such networks shown in Fig. 13. Wec(t) =x3(t)=x, x3(t)=x*t)=y and x3(t)=z and write
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down the dynamic equations for the new three-cluster syson the one hand, we do not observe any furttarleast

tem: trivial) symmetry in these equations. On the other hand, the
5 5 problem of global synchronization in our original graph has

X(t+1)= ( 1- —e) f(x)+ = ef(y), moved to the problem of synchronization of asymmetrically

12 12 connected oscillators which moreover have different values

5 5 for the coupling strength. According to this result, we believe

yt+1)=|1-<€|f(y)+5€f(x)+f(2)], that the problem of synchronization and clustering in RCM
6 12 . : :

might also include asymmetrically connected networks and

5 5 probably some cases of coupled systems with a distribution
z(t+ 1)=(1—ge>f(z)+ gef(y). (A1) I1(€) of € values[13,12.

[1] K. Kaneko, Phys. Rev. Let63, 219 (1989. it is generating There is a finite-to-one correspondence be-
[2] K. Kaneko, Physica D11, 137(1990. tween infinite sequences and initial conditions. See, for in-
[3] K. Kaneko, Physica Y5, 55 (1994); 55, 368 (1992. stance, S. Wiggins|ntroduction to Applied Nonlinear Dy-
[4] J.F. Heagy, T.L. Carroll, and L.M. Pecora, Phys. Rev5®& namical Systems and Cha(Springer, Berlin, 1990

1874(1994. [20] R.V. Sole S.C. Manrubia, J. Bascompte, J. Delgado, and B.
[5] D.H. Zanette and A.S. Mikhailov, Phys. Rev. &/, 276 Luque, Complexityd, 13 (1996.

(1998. [21] J. Delgado and R.V. Sol@hys. Rev. 55, 2338(1997.

[6] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence [27) The effect of introducing different sources of disorder has been
(Springer, Berlin, 1984 o . reported, for instance, in H. Bolet al, Parallel Computing
(7] ? Batztggtlokh, A. Preusser, and A. S. Mikhailov, Physica D 12, 113(1989; G. Abramson and D.H. Zanette, Phys. Rev. E

[8] Doli 3Zar(1e?t27);'md A.S. Mikhailov, Phys. Rev. BB, 872 58, 4454(1998; in Refs.[12] and[13].
v o ' ’ Y [23] In Fig. 10, where the temporal behavior of clusters is shown,

(1998. : .
[9] K. Wiesenfeld and P. Hadley, Phys. Rev. Lef2, 1335 only two or three clusters can often be seen. This, however, is

(1989. explained by the low precisiond&0.1) used in these plots.
[10] E. Niebur, H.G. Schuster, D.M. Kammen, and C. Koch, Phys. When the precision is increased, splitting of the clusters would
Rev. A 44, 6895(1991). be observed, similar to what is shown in Fig. 11.
[11] G. Caldarelli, P.G. Higgs, and A.J. McKane, J. Theor. Biol. [24] K.T. Alligood, T.D. Sauer, and J.A. York&haos(Springer-
193 345(1998. Verlag, Berlin, 1997.
[12] J.C. Stiller and G. Radons, Phys. Rev5& 1789(1998. [25] D.J. Watts and S.H. Strogatz, Natuteondon 393 440
[13] D.H. Zanette, Europhys. Letti5, 424 (1999. (1998.
[14] J.C. Sommerer and E. Ott, Natufieondon 365 136(1993;  [26] S.A. Kauffman, The Origins of Order(Oxford University
E. Ott and J.C. Sommerer, Phys. Lett.188 39 (1994; Yu. Press, Oxford, 1993
Maistrenko, T. Kapitaniak, and P. Szuminski, Phys. ReB6E  [27] K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen,
6393(1997). Phys. Rev. Lett81, 2380(1998.

[15] H. Fujisaka and T. Yamada, Prog. Theor. Phyd, 919  [28] A.S. Mikhailov, J. Phys. A21, L487 (1988.
(1989; N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett.[29] A.S. Mikhailov, inNonlinear Waves. Dynamics and Evolution

70, 279(1993. edited by A. V. Gaponov-Grekhov and M. I. Rabinovich
[16] E. Oftt, J.C. Sommerer, J.C. Alexander, |. Kan, and J.A. Yorke, (Springer, Berlin, 198p pp. 38-51.

Phys. Rev. Lett71, 4134(1993. [30] The value ofe is theoretically bounded by: For e> v diver-
[17] H. Fujisaka and T. Yamada, Prog. Theor. P§8.32 (1983. gencies in the values of might be found. In practical terms,
[18] Yu. L. Maistrenko, V.L. Maistrenko, A. Popovich, and E. however, it is found that interactions among the elements pre-

Mosekilde, Phys. Rev. B7, 2713(1998. vent their states from attaining extremal values, and thus val-

[19] The partition of the system has to be chosen in such a way that  ues ofe>v can be used with caution.



