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Mutual synchronization and clustering in randomly coupled chaotic dynamical networks

Susanna C. Manrubia and Alexander S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

~Received 16 October 1998; revised manuscript received 7 April 1999!

We introduce and study systems of randomly coupled maps where the relevant parameter is the degree of
connectivity in the system. Global~almost-! synchronized states are found~equivalent to the synchronization
observed in globally coupled maps! until a certain critical threshold for the connectivity is reached. We further
show that not only the average connectivity, but also the architecture of the couplings is responsible for the
cluster structure observed. We analyze the different phases of the system and use various correlation measures
in order to detect ordered nonsynchronized states. Finally, it is shown that the system displays a dynamical
hierarchical clustering which allows the definition of emerging graphs.@S1063-651X~99!04908-9#

PACS number~s!: 05.45.2a, 05.20.2y, 05.90.1m
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I. INTRODUCTION

Since their introduction in 1989@1,2#, globally coupled
maps~GCM! have turned out to be a paradigmatic exam
in the study of the emergent behavior of complex system
diverse as ecological networks, the immune system, or n
ral and cellular networks. It has been shown that mut
synchronization of chaotic oscillations is a robust prope
displayed by GCM@2,3#. Effects of mutual synchronization
are also known for coupled chaotic oscillators with contin
ous time@4#. A recent study@5# of large globally coupled
populations formed by chaotic Ro¨ssler oscillators has re
vealed that mutual synchronization and dynamical cluste
in these systems are similar to the respective behavior fo
in GCM. Another well investigated class of sel
synchronizing systems represents lattices of locally~e.g., dif-
fusively! coupled oscillators@6#. Moreover, oscillator sys-
tems with both local and global coupling between eleme
have also been discussed@7#. A common property of GCM
and the other abovementioned systems is their architec
symmetry: The pattern of connections of any individual e
ment is identical. This internal symmetry is preserved in
fully synchronized dynamical states and spontaneously
ken when dynamical clustering takes place.

The architecture of dynamical networks found in real e
logical or other systems would rarely be so symmetric. Ev
in the situations with high connectivity, when the links c
extend to many distant elements, the graph of connect
may have a complex topology. The question is theref
whether and in what form mutual synchronization and d
namical clustering can persist in such complexely connec
networks, lacking a structural symmetry. In this directio
among the few cases already explored we can mentio
layered system of identical random neural networks w
partial ~though regular! connectivity among layers@8#,
coupled lattice maps with connections extending further t
to nearest neighbors@9#, as well as coupled lattice oscillator
in two-dimensions~2D! with different coupling schemes@10#
or a model ecosystem with partial connectivity@11#. More
recently, ensembles of nonlinear oscillators@12# and GCM
@13# with random interactions and variable symmetry~still
globally coupled! have also been analyzed.

The analysis of systems formed by few coupled cao
PRE 601063-651X/99/60~2!/1579~11!/$15.00
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elements complements the previous approach and has
vided a better understanding of the collective behavior d
played by large ensembles of regularly connected cha
oscillators. The stability of the synchronous state can be
this case easily quantified by means of the transve
Lyapunov exponentl' , which changes sign in a blow-ou
bifurcacion @14# and makes the synchronous state unsta
Near the bifurcation, on-off intermittency@15# and riddled
basins of attraction@16# are observed. Much attention ha
been devoted to the dynamical properties of systems form
by two coupled, identical chaotic elements@17#. The syn-
chronization properties of two coupled logistic maps ha
been extensively investigated@18#.

As the next step towards understanding the synchron
tion phenomena in complex networks, one can consider
tems formed by a large number of identical dynamical e
ments that are connected by identical symmetrical links
where the pattern of connections between elements is
dom. This is the starting point of our paper. In the followin
sections we introduce and analyze what we have termed
domly coupled maps~RCM!, that is, networks of chaotic
maps connected~symmetrically! at random where the rel
evant parameter is the average connectivity in the system

Our main result is that mutual synchronization and d
namical clustering are possible in RCM even when a sign
cant fraction~up to 40–45 %! of all potential connections is
absent. However, the synchronization and clustering p
nomena in these systems are different in certain aspects
what is known for GCM. Exact synchronization and the fo
mation of identical dynamical states of the elements are
found here. Instead, either one or several compact clo
~fuzzy clusters! are formed. These fuzzy clusters are dynam
cal objects which split into subclusters or join other grou
of elements. Such dynamical hierarchy of clusters is alm
never completely fixed in time. A closely related effect
that the asymptotic dynamical behavior in RCM is nev
sensitive to the initial conditions. However, the architectu
of a particular network may bias the synchronization proc
and make certain cluster distributions more favorable. T
role of the network is particularly evident when the system
small @N.O(1)#: In this case, the synchronization prope
ties of the system are strongly dependent on the partic
architecture, and graphs with the same connectivity mi
1579 © 1999 The American Physical Society
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1580 PRE 60SUSANNA C. MANRUBIA AND ALEXANDER S. MIKHAILOV
have very different collective behavior. We will show th
only in the thermodynamic limit do the synchronizatio
properties of RCM become equivalent to the globa
coupled case.

In the next section we introduce the model and desc
its dynamical behavior. In Sec. III the synchronous and
partially ordered phases of the system are quantitativ
characterized by computing properties such as the mu
information and two order parameters of the synchroniza
transition. A more detailed statistical investigation is th
performed in Sec. IV where distributions over pair distanc
are constructed. Section V is devoted to the analysis of
emergent cluster structure in partially condensed phase
complement to the latter section is the Appendix, where
example of a small system with varying network archite
tures is considered. Finally, in Sec. VI we discuss our resu
come to the conclusions and outline future extensions of
study.

II. THE RANDOMLY COUPLED MAPS

We begin by exactly defining what we have termed ra
domly coupled maps. Instead of a globally coupled syst
this will be a network of connections characterized throug
random matrixTi j , the elements of which are either 0~when
a connection between mapsi and j is absent! or 1. In our
analysis, we assume that the matrix is symmetric, i.e.,Ti j
5Tji , and all diagonal elements are set to 0 (Tii 50). An
important property of such random networks is their aver
connectivity

n5
1

N~N21! (
i , j 51

N

Ti j . ~1!

Hence, each element will be on the average connecte
n(N21) elements in the system. Ifn51, the system is glo-
bally coupled and our system reduces to this known syst

The collective dynamics of RCM is defined as

xi~ t11!5S 12
e

n

1

N21(
j 51

N

Ti j D f @xi~ t !#

1
e

n

1

N21 (
j 51

N

Ti j f @xj~ t !#, ~2!

wheree specifies the strength of the coupling andf (x) is the
individual map. This collective dynamics can thus be und
stood as involving diffusion on a graph: Each node in
random graph diffuses a certain fraction of material~its state!
to the elements to which it is connected, and receives a c
parable influence from them. The intensity of coupling b
tween the network elements is specified by the paramete
~we have the constrainte,n). Nevertheless, the combina
tion e/n, which can be interpreted as a diffusion coefficie
plays an important role. Note that in the limitnN˜` all
RCM with a given connectivityn become statistically iden
tical. Indeed, in this limit each element will have the sam
numbernN of connections, although still it is linked only t
a randomly chosen subpopulation. If the mean-field appro
e
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mation holds, the behavior of this system would therefore
equivalent to the behavior of a GCM with coupling intens
e.

In this paper we investigate differences in the behavior
GCM and RCM with large, but finite numbers of elemen
We work with the logistic mapf (x)512ax2 and use values
of a such that the dynamics of a single map is chaotic. O
numerical simulations are performed for graphs with sizes
to N52048 elements and with connectivities in the interv
0.5,n<1. Such graphs have been randomly generated
independently choosing every possible connection with
same fixed probability. We have checked that thus gener
graphs remained fully connected, i.e., they could not be
ther separated into two disconnected parts.

Considering that we wish to compare the behavior
RCM with that of GCM, it is of interest to begin by briefly
recalling the dynamic behavior of GCM when the coupli
strengthe is decreased from 1 to 0~see Ref.@2#!. When, for
example,a52, the synchronous phase in GCM is mai
tained untile50.5, where it destabilizes and is substituted
the so called ‘‘glassy phase.’’ In Kaneko’s terminolog
‘‘glassy’’ means that the final attractor is sensitive to t
initial state of the maps, and thus a multiplicity of attracto
is to be found in this phase for the same parameters va
For e'0.33, an ordered phase sets in: The sensitivity to
initial conditions disappears and the elements group toge
in only 2 or 3 different clusters. A narrow intermittent ban
in 0.21,e,0.25 preceeds the turbulent phase, in which
number of clusters in all the attractors is of orderO(N).

We first examine the possibility of full mutual synchron
zation in RCM. Such full synchronization takes place
GCM when the coupling strength exceeds a critical va
@3#. In the fully synchronized~coherent! regime the states o
all maps in GCM are identical. Our analysis reveals that s
exact synchronization does not occur in RCM. However,
sufficiently high coupling intensities, all elements move t
gether in a single compact cloud~a fuzzy cluster!, so that the
typical distances between their trajectories remain be
uxi(t)2xj (t)u<1028 ~this is the single precision for rea
numbers in our computer!. The fuzzy synchronous phase
maintained for a certain range of values of the coupl
strengthe, and then a sudden transition to an asynchron
state~see the discussion below! is observed. Figure 1 show
how this transition proceeds for a randomly chosen netw
with n50.8 andN550 elements. For comparison, we sho
in the same figure the respective behavior of GCM. Wh
for GCM the turbulent-ordered-glassy-synchronous seque
of phases is clearly seen whene decreases, only the synchro
nization breakdown for RCM is apparent.

We have studied how the synchronization threshold
RCM depends on the mean connectivityn of the network
and on its sizeN. We accept that the elements in a give
network are synchronized if the average distanced̄ between
pairs of elements during an intervalDt is smaller than 1028,
after a transient is discarded, that is,

d̄5
1

N~N21!Dt(̂i j & (
Dt

uxi~ t !2xj~ t !u,1028. ~3!

The simulations begin at a value ofe,e* which is stepwise
increased in amounts 1023 until the condition~3! is fulfilled.
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PRE 60 1581MUTUAL SYNCHRONIZATION AND CLUSTERING IN . . .
We have also observed that immediately prior to the s
chronization transition, the distanced̄ undergoes a sharp cu
off and afterwards stabilizes around small values which
pend on the system size (d̄ is in the synchronous phase
decreasing function ofN). In Fig. 2 the distance to the syn
chronization threshold of GCM is shown as a function of t
network size when the connectivity is kept constantn
50.9). Numerically, we obtain

e* 2eGCM* .
1

AN
. ~4!

FIG. 1. Numbers of clusters as functions of the coupli
strengthe for RCM of sizeN550 and connectivityn50.8 and for
GCM (n51) of sizeN550. In the RCM case, two elementsi and
j are considered to belong to the same cluster ifuxi(t)2xj (t)u
,1028. In the GCM case, two elements belong to the same clu
if their states are identical.

FIG. 2. Dependence of the synchronization thresholde* on the
network sizeN. The open circles correspond to average values
the critical coupling intensitye* for networks of sizes ranging from
N523 to 211 with the same connectivityn50.9. The solid line has
slope21/2. In the inset we show the dispersion in the values ofe*
as a function of the system size. The solid line has slope21. In this
case,a52 and thuseGCM* 50.5.
-

-

Large open circles are averages over 10 to 30 indepen
graphs, and are represented together with the dispersion

De* ~N!5F(
j

@e j* ~N!2 ē* ~N!#2

@N~N21!#
G 1/2

in the thresholds~error bars!. The indexj stands for different
networks formed by the same number of elementsN, while
ē* (N) is the average value for each size. Small solid circ
represent the synchronization threshold for each of th
graphs. The error in the determination ofe* for each net-
work is 1023. The solid line in the main plot has slope
21/2.

As larger networks are considered, the dispers
De* (N) in the synchronization thresholds for different ne
works with the same connectivity becomes smaller~inset!.
Our numerical results point to a dependence of the fo
De* .N21. The fact that the dispersion in the values ofe*
tends to zero in the limitN˜` for a fixedn indicates that
RCM are characterized by self-averaging quantities. In vi
of these results, the RCM should be well described b
mean-field approximation, thus by GCM, in the limitnN
˜`. In fact, the numerical simulations agree with this p
ture. In the opposite limit, when the number of elements
the systems is small@N.O(1)#, the threshold at which the
group first synchronizes is very sensitive to the particu
way the maps are connected, as can be already seen fN
<64 in Fig. 2~see also the Appendix!. Figure 3 depicts the
synchronization threshold for systems withN550 and N
5500. Every point corresponds to a fixed network with co
nectivity given in thex axes and the critical valuee* in the
y axes.

The synchronization threshold for GCM has previous
been exactly determined@2#. WhenN˜` it is given by the
condition e5eGCM* where the critical coupling is obtaine
from l1 ln(12eGCM* ),0 andl is the Lyapunov exponen
of the single logistic map. It can be expected that the s

er

f

FIG. 3. Threshold to synchronization. Small solid circles a
critical thresholds for systems of sizeN550 and big open ones
correspond toN5500. We restrict ourselves to valuese<n, as
discussed in the main text. The linee51/2 is the stability threshold
for GCM, and acts as a lower boundary for RCM.
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1582 PRE 60SUSANNA C. MANRUBIA AND ALEXANDER S. MIKHAILOV
chronization threshold for RCM approaches the limite
5eGCM* whenn˜1, for any value ofN, and also whennN
˜`, and independently ofn, as has been discussed. It c
be seen from the numerical results represented in Figs. 2
3 that the valuee50.5 ~for a52) yields indeed a lower
estimate for the synchronization threshold in RCM.

The system falls into the synchronous phase after a t
sient of diverging length when approaching the synchron
tion thresholde* . Figure 4 shows the dependence of t
transient timetc on the distancee2e* to that threshold. The
insert shows the dynamics during a typical transient. We
that strong fluctuations~intermittency! are accompanying the
convergence process. Representing the dependence o
transient time in the formtc}(e2e* )2t, we find that the
exponentt'1 is typical both for RCM and GCM. More
precisely, a least squares fit to numerical data returnstGCM
50.997(3) andtRCM50.982(3), and thecritical threshold
values to synchronization areeGCM* 50.5 andeRCM* /n'0.87
for the particular graph of Fig. 4.

Below the synchronization transition, the glassy phas
observed in GCM. The dynamical behavior of RCM in t
regione,e* is investigated in the next section.

III. MUTUAL INFORMATION AND THE TWO ORDER
PARAMETERS

We have used three different measures of correlati
among elements to check if the phase withe,e* has still
some intrinsic order. The first of them is themutual informa-
tion between two mapsi and j, I i j (S). To define this quan-
tity, we introduce a partition of the phase space of the log
tic map in the following way. If the state of the chose
elementi is xi(t)>0 then it will be assigned a value 1, and
if xi(t),0. This generates a sequence of bits in a cer
time intervalSt

iPS[$0,1% which allows the calculation o
the Boltzmann entropy for thei th map@19#,

FIG. 4. Divergence in the transient timetc when approaching
the critical pointe* for a randomly chosen network withN550 and
n50.8 ~squares! and for the GCM of the same size~filled circles!.
The solid line indicates the divergence law witht51. The inset
displays the number of clusters as function of time for the RCM
e50.7.
nd

n-
-

e
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Hi~S!52 (
St

i
50,1

P~St
i !ln P~St

i !. ~5!

In a similar way we define the joint entropy for each pair
maps,

Hi j ~S!52 (
St

i
50,1

(
S

t8
j

50,1

P~St
i ,St8

j
!ln P~St

i ,St8
j

! ~6!

and finally the mutual information fori and j is given by

I i j ~S!5Hi~S!1H j~S!2Hi j ~S!. ~7!

The mutual information is a good measure of correlatio
e.g., it achieves maximal values near critical points@20#. In a
context closer to ours it has been shown to accurately
criminate among the different phases of GCM@21#. An in-
teresting property ofI i j is that it is practically precision in-
dependent, due to the rough coarse graining of the dynam

As an illustration of the sensitivity of this measure, let
discuss which values ofI i j are expected in two dynamicall
opposite regimes, i.e., for the synchronous and the turbu
phases. In the coherent~synchronous! phase where the state
of all elements are identical, the sequencesSt

i are the same
for all of them, thereforeHi(S)5H j (S). In addition, since
the two chosen maps are visiting the same points, we h
Hi j 5Hi and thusI i j 5Hi , reflecting the trivial nature of the
correlations. Whena52, because of the symmetry in th
invariant measure of the logistic map for this parameter~and
noting that the synchronized system is equivalent to
single map! the mutual information achieves its maximu
value. In fact, under these conditions,P(0)5P(1)51/2,
thus maximizingHi5 ln 2 and alsoI i j 5 ln 2. For parameter
valuesaÞ2 the invariant measure is not symmetric arou
0, P(0)ÞP(1) and henceI i j , ln 2 typically. Nonetheless, a
can be seen in Fig. 5, the synchronous state is clearly

t

FIG. 5. Mean mutual information̂I i j & as a function of the cou-
pling intensitye for a GCM (n51) of sizeN5200 ~dashed line!
and three randomly chosen networks of the same size, connec
n50.8, and values ofa as shown. The sequencesSt

i were taken
after discarding a transient of 103 steps. The GCM data are add
tionally averaged over 100 random initial conditions, and the RC
over 25 independent graphs.
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PRE 60 1583MUTUAL SYNCHRONIZATION AND CLUSTERING IN . . .
tected through this measure. In the turbulent phase~assuming
that the elements behave independently and are not c
lated! we will have againHi(S)5H j (S), but now the joint
probabilities factorize,P(St

i ,St8
j )5P(St

i)P(St8
j ) and Hi j

52Hi . In this phase we therefore expectI i j '0 irrespec-
tively of the parametera. In the intermediate cases, whe
some correlations are present, the mutual information sho
take values between the former two limits, 0<I i j < ln 2.

To determine the mean mutual information

^I i j &5
2

N~N21! (
^ i , j &

I i j ~8!

for a network with a given matrixTi j , we take an average o
the mutual informations for all possible pairs (i , j ) for long
enough sequences to ensure the stability of the probabil
~typically Dt51032104 after discarding a transient!. Figure
5 shows the typical computed dependences of the mean
tual information^I i j & on the coupling strengthe for RCM in
the casesa52, 1.8, and 1.6, and GCM. At low couplin
intensities, the mutual information is zero, indicating the a
sence of correlations in the turbulent phase. It starts the
increase and reaches a maximum. In GCM this maxim
corresponds to the ordered phase. When the coupling in
sity is further increased, the mutual information fa
down—at the onset of the glassy phase for GCM—befor
finally increases and reaches a stable high value in the
chronous state. The effect of a decreased connectivity tr
lates into a shift of the phases to higher values of the c
pling e. For low enoughn, synchronization is no longe
possible~see also Fig. 3!. Thus, though by direct counting o
the number of clusters~Fig. 1! we could not see any orderin
in RCM for e,e* , the present analysis based on the m
sure of the mutual information clearly shows that the n
works have intrinsic dynamical organization also in this
gion.

Further characterization of different RCM phases is p
vided by twoorder parameters@5#. We examine all different
N(N21)/2 pairs of elements in the system and count h
many of them are at a distance shorter than a fixed gi
precisiond. The first order parameterr (d) is defined as

r ~d!5
2

N~N21! (
^ i , j &

Q@d2uxi~ t !2xj~ t !u#, ~9!

where Q(x) is a step function,Q(x)50 for x,0 and
Q(x)51 for x.0. The sum is taken over all possible o
dered pairŝ i , j &. The second order parameters(d) is given
by the relative number of elements having at least one o
element at a distanced,d.

In globally coupled systems the synchronization p
ceeeds until all the elements in the same cluster asymp
cally reach identical dynamical states. In this case, one
choose the highest available precision in the calculation
the two order parameters~in actual simulations it is limited
by the computer precision!. As we have already noted, th
absolute synchronization does not occur in RCM. Inste
only clusters of elements having close dynamical states
formed here. Therefore the choice of the precisiond be-
comes important when networks are considered.
re-
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We have computed the order parameters as function
the effective coupling strengthe/n for RCM and the respec
tive GCM using varying precisionsd. It was found that the
results for GCM only weakly depended on the precision in
wide interval 10210,d,1023. The curves shown in Fig
6~a! for GCM have been calculated usingd51026. We see
that the order parameterr for GCM reaches, as should b
expected, the valuer 51 in the fully synchronous~coherent!
state at high coupling intensities. However, a large relat
numberr of synchronous pairs is also found in this case
lower coupling intensitiese in the ordered phase. Moreove
the second order parameters in this phase is close to 1 indi
cating that almost all elements belong to one of the synch
nous clusters.

In contrast to globally coupled systems, dynamical clu
tering and synchronization in RCM is best resolved when
optimal small precision is employed. The plots shown
RCM in Fig. 6~b! have been therefore constructed for t
optimal precisiond51023. We see that in the regione
.e* , where fuzzy mutual synchronization is observed, b
order parameters reach their maximal possible values,r 5s
51. Below the synchronization threshold, both order para
eters rapidly decrease but then show a maximum. For sm
coupling intensities, the order parameters become very s
@a somewhat larger initial level ofs is explained by the fact
that d is larger here than in Fig. 6~a! and therefore a smal
number of pairs separated by the distanced is found already
in the turbulent phase, for the random independent distri
tion over the one-particle attractor#.

Thus, the behavior of the order parameters is again qu
tatively similar in RCM and GCM. We can conclude th
within a certain interval of coupling intensities, dynamic
clustering of elements occurs in these systems. The dif

FIG. 6. Order parametersr ~dotted lines! ands ~solid lines! as
functions of the coupling intensitye for a GCM of sizeN5250 ~a!
and for a randomly chosen network~the same as in Fig. 5! of size
N5250 and connectivityn50.8 ~b!. The employed precisions ar
dGCM51026 and dRCM51023. Averaging over 100 random initia
conditions is additionally performed for GCM.
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1584 PRE 60SUSANNA C. MANRUBIA AND ALEXANDER S. MIKHAILOV
ence is that, in the case of RCM, the clusters are fuzzy
can therefore be identified only when a sufficiently low p
cision is used. One further difference is that for RCM t
order parameters do not fall down so sharply immediat
below the synchronization threshold and a significant nu
ber of elements still has close neighbors in this region.

IV. DISTRIBUTIONS OVER PAIR DISTANCES AND
DYNAMICAL CLUSTERS

Additional information about the structure of differe
phases in RCM is provided by histograms of distributio
over pair distances. Such histograms are constructed
counting at a given time moment the numbers of pairs (i , j )
with distancesdi j 5uxi2xj u lying within subsequent smal
intervals Dd. Figure 7 shows these normalized histogra
for one fixed randomly chosen network with a large num
of elements (N51000) at several coupling intensitiese. In
the turbulent phase, a flat distribution corresponding to
most independent elements is found@Fig. 7~a!#. When the
coupling intensity is increased, some inhomogeneities s
to develop in the distribution~the mutual information and the
order parameters also begin here to increase!. The peaks ap-
pearing later in the distributions indicate the onset of d
namical clustering@Fig. 7~b!#. In the situation shown in Fig
7~c! the system has two fuzzy clusters. When the coupl
intensity is further increased, the cluster structure is
stroyed and the distribution characterized by a broad m
mum at zero distance between elements is formed@Fig.
7~d!#. As the coupling intensitye grows, this maximum gets
increasingly narrow until the synchronous state is reache
e5e* .

The distributions over pair distances in Fig. 7 correspo
to fixed time moments and therefore cannot tell us anyth

FIG. 7. Normalized histograms of distributions over pair d
tancesdi j for different coupling intensities~a! e50.1, ~b! e50.25,
~c! e50.35, and~d! e50.45 for a randomly chosen network of siz
N51000 with connectivityn50.8. The histograms are obtained b
counting the numbers of pairs with the distances falling inside s
sequent intervals of widthDd50.01 at a fixed time momentt
5200 after the transient. The vertical and horizontal axes have
same scales in all these histograms and stand for the proba
density and for the distance between states, respectively.
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about dynamical properties of the clusters. To analyze
underlying dynamical behavior of the system, we have p
ted in Figs. 8~a!–8~d! the typical time evolutions of the dis
tance between two elements for the histograms displaye
Figs. 7~a!–7~d!.

In the turbulent phase@Figs. 7~a! and 8~a!# the pair dis-
tance evolves in an irregular way and shows large variatio
as it can be expected for two independent logistic maps
the beginning of the clustering phase@Figs. 7~b! and 8~b!#,
the elements tend to stay much closer~notice the change in
the vertical scale! and weak aperiodic oscillations are o
served.

For coupling intensities near the top value of the mut
information @Figs. 7~c! and 8~c!#, the elements lock into pe
riodic trajectories. Examining the trajectories of individu
elements, we have seen in this case that all of them are
periodic, though different for different elements of the sy
tem. Thus, the system acquires rigid internal organizat
and falls into a state of frozen disorder. The pair distan
between two elements in a cluster shows in this case pu
periodic variation. The clusters are rigid and no exchan
among them are observed. Figures 7~b! and 7~c! represent
two elements belonging to the same cluster. The dista
between intercluster pairs shows analogous behavior~i.e.,
weak aperiodic oscillations or periodic dynamics! although
then the typical separations are of orderO(1).

An interesting dynamical behavior is observed for high
coupling intensities, preceeding the synchronization tran
tion @Fig. 7~d!#. Now the elements alternate between sh
periods of partial synchronization and excursions away fr
the incipient cluster@Fig. 8~d!, note the increase in the ver
tical scale#. This form of behavior is in fact very reminiscen
of on-off intermittency@15#. Such intermittency can explain
the origin of the broad shoulder in the histogram of Fig. 7~d!:
It is formed by the elements that temporarily find themselv
during a large excursion from the central cluster.

The previous analysis has been also carried out foa
51.8. The above described picture is also obtained for
other value of the parameter in the logistic map and for c
responding coupling strengthse50.1, 0.15, 0.25, and 0.29
This sequence is coherent with the different phases dete

-

e
ity

FIG. 8. Time evolution of the distance between a pair of e
ments in the same random network as in Fig. 7 for different c
pling intensities~a! e50.1, ~b! e50.25, ~c! e50.35, and~d! e
50.45. In cases~b! and~c! the elements belong to the same clust
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by the mean mutual information̂I i j & and represented in Fig
5.

The formation of clusters with periodic dynamics has p
viously been observed in the ordered phase of glob
coupled logistic maps@3#. As the coupling intensity is furthe
increased, this ordered phase is replaced in this system b
glassy phase where the system has a large number of d
ent attractors and its asymptotic dynamics strongly dep
on the initial conditions. The glassy phase of GCM prece
the final transition to the fully synchronous coherent stat

An important result of our study is that the glassy beh
ior was absent in the studied randomly coupled maps. W
dynamical clustering was observed in this system, the clu
structure did not depend on the initial conditions and w
completely determined by the architecture of the underly
graph. Moreover, the phase of dynamical clustering is se
rated in RCM from the synchronous phase by the region
intermittent regimes.

Our interpretation of this finding is that the quenched d
order introduced by randomly deleting some connection
transforming the GCM into RCM–is to a certain exte
equivalent to the introduction of a small amount of dynam
cal noise ~either multiplicative or additive! in a globally
coupled system@22#. We have checked this conjecture b
constructing the distributions over pair distances for GC
and RCM in the glassy and intermittent phases, respectiv
Moreover, we have also computed similar distributions
GCM where an additive or a multiplicative noise have be
included. The dynamical evolution of the noisy GCM is d
fined through

xi~ t11!5~12e! f „xi~ t !…1
e

N (
j 51

N

f „xj~ t !…1zg„xi~ t !…,

~10!

where g„xi(t)…5r i(t)x
i(t) in the multiplicative case and

g„xi(t)…5r i(t) in the additive case. We have used a sm
amplitudez51023 for the noise, andr i(t) is a random num-
ber between21 and 1. It is chosen anew for each map
each time step.

Figures 9~a! and 9~b! show in a logarithmic scale the his
tograms of distributions over pair distances in the gla
phase of the globally coupled logistic map under two diff
ent choices of the initial conditions for the same coupli
intensity. We see that the resulting distributions are very
ferent. Note that both distributions have been averaged o
time, so that the peaks and irregularities in these figures
veal the persistent structure of the underlying attractors. F
ure 9~c! shows how these distributions are influenced by
troducing into the GCM a weak additive~dashed line! or
multiplicative ~bold line! noise of intensityz51023 accord-
ing to Eq.~7!. The noises wash out the fine jagged struct
of the distribution and, more importantly, make it indepe
dent of the initial conditions. The resulting distributions b
come then clearly similar to the respective distribution
obtain at the same coupling intensity for RCM, Fig. 9~d!.

We would like to emphasize that this parallelism betwe
quenched disorder and dynamical noise might hold in
intermittent phase, but of course the mechanisms leadin
the dynamical behavior observed in other phases canno
~at least solely! ascribed to noise. In the clustering phase,
-
ly
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instance, it should be clear that the fixed~though disordered!
structure of the network plays the main role. In this sense,
have analyzed the dynamical behavior of the clusters
measuring in a fixed network how many elements belong
a certain cluster and how many clusters are formed at e
time step. A clusterCm(d;t) for a given precisiond and at
time t is formed bykm elements,m51, . . . ,M such that all
of them have at least another element of the cluster a
distanced,d, that isd5uxi(t)2xj (t)u,d, ; i and somej
PCm in order to say that alsoi PCm .

In Fig. 10 we represent the size of all clusters in a n
work with N550 elements as a function of time~for a fixed

FIG. 9. Normalized histograms over pair distances for a GC
of size N550 and two different initial conditions~a!,~b! for the
same GCM in the presence of an additive~dashed line! or multipli-
cative~bold line! noise of intensityz51023 ~c!, and for a randomly
chosen network of the same size with connectivityn50.8 ~d!. The
coupling intensity ise50.45 in all these plots; time averaging
additionally performed.

FIG. 10. Size and stability of synchronous groups in the cl
tering phase. The dynamical behavior of a fixed network withN
550 elements andn50.8 is analyzed for coupling strengthse
50.25 ~a!, e50.28 ~b!, e50.3 ~c!, ande50.32 ~d!. The precision
is in this cased50.1. Weakly coupled elements coexist with lon
lived clusters which often split into smaller subgroups.
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precisiond50.1). Four different values ofe in the clustering
phase have been chosen. In the first plot@Fig. 10~a!, e
50.25], the elements tend to cluster but the groups are
relatively unstable. A closer inspection of the clustering d
namics reveals that a group of 19 elements keeps stab
time, while another cluster containing the 31 remaining e
ments splits often in subgroups of sizes~17,14!, ~18,13!, or
~20,11! among others. If the coupling strength is increas
also the stability of the clusters increases, and their ave
lifetime becomes longer. In Fig. 10~b!, for e50.28 we ob-
serve that, in fact, larger and more stable clusters are form
Now the elements are divided into a cluster with 20 eleme
and a second group with 30 that often splits into two s
clusters with 27 and 3 elements, respectively. Some irre
larities in the dynamics are also found. In the hard-lock
phase for this network@Fig. 10~c!, e50.30] two stable clus-
ters with 24 and 26 elements are formed. As already
cussed, the maps display periodic trajectories in this nar
parameter region. For a slightly largere50.32, in Fig. 10~d!,
we see a first stable group with 27 elements and a second
with 23 including a weakly coupled map~which periodically
leaves the cluster!.

We have observed that the transient time required for
system to fall into the clustering phase increases with
increase ofe. At the same time, it is seen that elements ha
a trend to condense in a single group, as revealed by
presence of some time steps where the cluster size equaN.
This is not found to happen at the beginning of the cluster
phase, for values ofe,0.27. Finally, for e'0.35 ~in the
network of Fig. 10! the maps do not form clusters any mo
and the intermittent phase begins.

V. PARTITIONS INTO DYNAMICAL CLUSTERS

In this section we more closely examine the structure
the dynamical clustering phase in RCM. In this pha
groups of maps moving together in a robust way and form
long-lived clusters have been observed. The emerging clu
structure is biased by the connection patterns of the unde
ing network. To demonstrate this, we introducerelative con-
nectivitiesthat are defined below.

Let us suppose that at timet and with precisiond our
system separates intoM clusters, Cm(d;t), m51, . . . ,M ,
each of which containingkm elements. The relative connec
tivity inside a clusterm is then defined as

neff
m 5

1

nkm~km21! (̂
i j &

Ti j , i , j PCm , iÞ j , ~11!

where the sum is taken over all pairs of elements belong
to this cluster. The relative connectivity between two diffe
ent clustersl andn is given by

neff
l ,n5

1

nklkn
(̂
i j &

Ti j , i PCl , j PCn . ~12!

Thus defined, the relative connectivities are equal to 1 if
characteristic connectivity inside a cluster or between t
clusters are exactly the same as the average connectivityn of
the entire network. Positive deviations of the connectiv
inside a cluster (neff

m .1) indicate that this cluster contain
ill
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elements which are more strongly connected than on the
erage. Respectively, when the relative connectivity betw
two clusters is decreased (neff

l ,n,1), this shows that the ele
ments belonging to these two separate clusters are less
nected than on the average andvice versa.

We can also define the averageinterclusterrelative con-
nectivity of the entire network

neff
inter5

1

M ~M21! (
n,l 51;nÞ l

M

neff
l ,n ~13!

and its averageintracluster relative connectivity

neff
intra5

1

M (
m51

M

neff
m . ~14!

To characterize the cluster structure of the partially
dered phase, we fix the coupling intensitye and consider the
state of the whole system at a given time moment. By va
ing the precisiond, we obtain a hierarchy of cluster part
tions, as seen with different resolutions. For each resolu
level, its relative connectivities are then calculated. Figure
presents the emerging hierarchical structure of dynam
cluster partitions for a system ofN550 elements with cou-
pling strengthe50.23 at three different precisionsd. The
numbers between brackets correspond to the number of
ments in each particular cluster. The numbers inside the c
ters are their relative connectivities and the numbers on
links between the clusters yield the relative connectivity b
tween them. Though this pattern refers to a particular ti
moment ~after a long transient!, it remains fairly stable in
time. We see that, as the precisiond is improved, the clusters
split into smaller subclusters, revealing a hierarchical tree
structure@23#. It can also be observed in Fig. 11 that th
relative connectivities inside a cluster exceed 1, whereas
relative connectivities between the clusters are typica

FIG. 11. Hierarchical structure of dynamical clusters for a ra
domly chosen network of sizeN550 with the connectivityn50.8
at e50.23.
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smaller than 1. This indicates that the partition into dynam
cal clusters is biased by the pattern of connections in
underlying network, i.e., the elements belonging to a sa
cluster would generally have more connections inside
cluster than with the elements belonging to other dynam
clusters.

To check more accurately this suggestion, we have ca
lated intercluster and intracluster connectivitiesneff

intra and
neff

inter for a larger system withN5250 andn50.8 ate50.3
with the precisiond50.1. These properties were averag
over 104 independent graphs. The average intracluster c
nectivity was in that casêneff

intra&51.013(1), that is, slightly
higher than numerically generated average connectiv
^neff&51.0000(1). Theaverage intercluster connectivity wa
^neff

inter&50.987(1) and thus lying beloŵneff&. Figure 12
shows the normalized probability distribution over intraclu
ter ~solid line! and intercluster~dashed line! connectivities in
the studied ensemble of 104 independently generated graph
The maxima of the two distributions are slightly shifted. B
perhaps even more important, we see that the distributio
the intercluster connectivities is significantly broader and
a wide shoulder extending towards lower connectivities.

VI. DISCUSSION

Our numerical analysis reveals that mutual synchron
tion and dynamical clustering represent a typical and rob
form of collective dynamics in random networks of coupl
chaotic elements. The mutual synchronization remains p
sible when almost half of all potential connections betwe
the elements are deleted and the dynamical clustering ma
found even for the more sparsely connected networks.
very low connectivities, we have seen that the system co
no longer synchronize and the dynamical clusters in the
tially condensed phase became less stable, i.e., their lifet
were getting shorter.

The different dynamical phases of RCM have been sp

FIG. 12. Statistical distributions over intracluster~solid line! and
intercluster~dashed line! effective connectivities in the clusterin
partitions in an ensemble of 104 independently generated rando
networks of sizeN5250 with mean connectivityn50.8 and cou-
pling strengthe50.3. In this case, we have taken the precisiond
50.1.
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fied and compared with their counterparts in GCM. The
sential differences have been noticed in the cluster struc
and in the dynamics, as well as in the dependence on
initial conditions. A rich clustering structure, depending
the network architecture, was observed in RCM. The ana
of the glassy phase of GCM was, however, not found in
investigated randomly coupled maps, i.e., we have not s
that the final attractor depended on the initial conditions
any set of parameters. In this sense, the quenched disord
the random network appears to play a role similar to tha
noise in this phase. It might also be that the transition fr
synchronization to the intermittent phase in RCM would a
mit a characterization in terms of a blowout bifurcation@14#,
and that the intermittent phase that we observe immedia
after the synchronous state be in fact a case of on-off in
mittency. This picture would be consistent with our nume
cal results and with the fact that the disorder in the netw
architecture destroys the degeneracy of the dynamical ma
in GCM @2# and generates a whole hierarchy of Lyapun
exponents.

Though our investigations were made only for networ
formed by coupled logistic maps, similar results would pro
ably hold for networks made of other chaotic maps or e
ments with continuous chaotic dynamics. Indeed, the beh
ior in globally coupled logistic maps strongly resembl
what is found in various globally coupled populations
chaotic dynamical systems@5,8#.

The systematic study of RCM implies the analysis of t
behavior of the system under the change of four relev
parameters: The average connectivityn, the coupling
strengthe, the parameter of the individual mapa, and the
system sizeN. Our main interest in this study was to intro
duce randomly coupled maps and to give some insight
the role of the network architecture in the dynamics. Hen
we have mainly investigated the two parametersn and N,
and reanalyzed the known phases for GCM whene varies
from zero to unity. Many of our investigations were pe
formed with control parametera52 of the logistic map. This
value is somewhat special, since ata.2 the trajectories be-
come infinite and the chaotic attractor disappears in a bou
ary crisis @24#. Other simulations for smaller values of th
control parametera show a similar qualitative behavior.

In our study, the networks were generated by indep
dently choosing with a certain fixed probability the conne
tion between any two elements. Thus constructed, the c
nection patterns are random, but statistically uniform. W
have analyzed systems with sizes ranging from a few
ments toN5211. Generally, the synchronization thresho
depended not only on the system size and on the ave
connectivity, but also on the particular architecture of a ch
sen network. We have seen, however, that variations in
synchronization threshold for networks with the same me
connectivity became much weaker when the network s
was increased, and that the distance to the mean field thr
old given by GCM had the functional form (e* 2eGCM* )
.N21/2. The existence of a universal synchronization thre
old in such randomly generated networks in the limitnN
˜` is thus expected. The statistical uniformity, introduc
in this paper through the independent choice of individ
connections, is a special feature that should not necess
be present in complex networks. Natural networks may h
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various topological structures@25# which can also resul
from evolutionary processes@26,27#. It would be interesting
to see how synchronization and the dynamical cluster
phenomena are influenced by such structures.

We have found that the network architecture biases
partitions of the network into dynamical clusters and det
mines interactions between the clusters which lead to t
collective dynamics. This puts forward the task ofengineer-
ing the networks with the desired dynamical clustering pro
erties. One can apparently design systems that would dis
an arbitrarily chosen partition into several exactly synch
nized clusters~see the Appendix!. The collective dynamica
behavior can represent an important practical function o
network. The evolution of a network, proceeding throu
random mutations, may then be guided towards the opt
zation of its collective dynamics. Indeed, examples of d
namical networks that evolve to reproduce given tempo
‘‘melodies’’ have already been constructed@28,29#. We want
therefore to emphasize that the evolution of networks
also be steered to reach better synchronization propertie
to approach a certain dynamical clustering structure.

Finally, we note that when the dynamical clustering
taking place, coherent clusters can be interpreted as s
elements that form an emerging dynamical network o
higher structural level. Taking into account the large vari
of clustering partitions and their sensitivity to the coupli
intensity, RCM systems may thus be viewed as a liv
space that supports different dynamical~meta!networks and
may retrieve a particular such network under appropr
changes of the control parameters.
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APPENDIX

It was earlier noted that the network architecture infl
ences the critical coupling intensitye* at which synchroni-
zation first appears and favours certain preferred partition
elements into dynamical clusters. In this appendix we a
lyze the role of the network architecture in the dynami
clustering phenomena for small networks consisting of o
N55 elements. If the network connectivity is fixed atn
50.6, there are just four such networks shown in Fig. 13.

FIG. 13. Four different possible configurations of a netwo
with N55 elements andn50.6. In each graph, favored synchron
zations are displayed using the same symbol.
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have systematically investigated their synchronization pr
erties for various values of the control parametera of the
logistic map in the interval from 1.42 to 2 with increme
Da50.02 and for the coupling intensitye in the interval
from 0 to n with incrementDe50.01. In this case we hav
considered that two maps are synchronized if they have
actly the same state. This is now licit because of the h
degree of symmetry of the networks. The percent of para
eter pairs leading to each of the possible clustering confi
rations is displayed in Table I. In Fig. 13, elements with t
same symbol synchronize~i.e., they form a cluster! with the
higher probability. Different symbols stand for differen
clusters. The value ofe at which the elements in each of th
networks synchronize can take a wide spectrum of valu
For instance, fora51.6 it changes from 0.56@case~A!# to
0.96 @case~B!# @30#. Moreover, we have found thate* is a
nonmonotonic function ofa, and can be even decreasin
depending on the graph. Hence, ifN is small, each network
has to be treated independently~as in the example here ana
lyzed!.

We see that indeed in the majority of cases the cluste
partition follows the pattern of connections in the grap
Moreover, some of the potential highly asymmetrical pa
tions have never been observed@such as the partition into
~1,5!, ~2,3!, ~4! for the graph A#. This shows that the sym
metry of connections inside a graph plays an important r
in the dynamical clustering phenomena.

Looking at the graph A, we see that the dynamical eq
tions of its elements are not changed under the relabe
(1,2,3,4,5)̃ (2,1,4,3,5), reflecting the symmetry with re
spect to permutations in the matrixTi j for this graph. It
seems highly plausible that synchronous clusters would g
erally be much easily formed byindistinguishableelements,
defined as those whose dynamical equations are iden
under permutations. This is the reason that allows synch
nization to be of the hard locking~exact! type in this case.
The numerical results shown in Table I support this sta
ment.

Consider, for example, the situation in which the clust
~1,2!, ~3,4!, and ~5! have been formed in~A!. Let us call
x1(t)5x2(t)[x, x3(t)5x4(t)[y and x5(t)[z and write

TABLE I. Percent of realizations~%! for the clusterings shown
and for each of the networks in Fig. 13.

Network Clusters % Network Clusters %

A ~1,2,3,4,5! 5 B ~1,2,3,4,5! 1.5
~1,2,5! ~3,4! 2 ~1,2,4! ~3! ~5! 1
~1,2! ~3,4,5! 1 ~1,2! ~3! ~4! ~5! 75

~1,2! ~3,4! ~5! 59 ~1,2,3,4! ~5! 1
turbulent 33 turbulent 21.5

C ~1,2,3,4,5! 2 D ~1,2,3,4,5! 4
~1,2,3,4! ~5! 1 ~1,2,3,4! ~5! 1

~1,3,4! ~2! ~5! 17 ~1,2! ~3,4! ~5! 57
~1,3,4! ~2,5! 0.5 ~1! ~2! ~3,4! ~5! 1.5

~1,2! ~3,4! ~5! 0.5 ~1,2! ~3! ~4! ~5! 1.5
~1! ~2! ~3,4! ~5! 17 turbulent 35

turbulent 62
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down the dynamic equations for the new three-cluster s
tem:

x~ t11!5S 12
5

12
e D f ~x!1

5

12
e f ~y!,

y~ t11!5S 12
5

6
e D f ~y!1

5

12
e@ f ~x!1 f ~z!#,

z~ t11!5S 12
5

6
e D f ~z!1

5

6
e f ~y!. ~A1!
ce

D

ys

ol.

et

ke

.

th
s-On the one hand, we do not observe any further~at least
trivial! symmetry in these equations. On the other hand,
problem of global synchronization in our original graph h
moved to the problem of synchronization of asymmetrica
connected oscillators which moreover have different val
for the coupling strength. According to this result, we belie
that the problem of synchronization and clustering in RC
might also include asymmetrically connected networks a
probably some cases of coupled systems with a distribu
P(e) of e values@13,12#.
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