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Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant
environments. Previous theoretical analysis predicted that such populations will evolve toward highly con-
nected regions of the genome space. We first study the evolution of populations of replicators on simple
networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on
the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network
neutrality is broken through the introduction of an energy for each sequence. This allows to study the compe-
tition between two features �neutrality and energetic stability� relevant for survival and subjected to different
selective pressures. In cases where the two features are negatively correlated, the population experiences
sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical
study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already
seen in representative examples of small networks.
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I. INTRODUCTION

One of the tenets of the Darwinian theory of evolution is
that the fittest variants in a population increase in number
and might eventually get fixed, thus eliminating less fit
forms. Fitness refers to the phenotype of individuals, to the
measurable features that determine their suitability in a given
environment. The phenotype is the target of selection, but
random mutations, responsible for the generation of new
variants, can only act on the genotype. A better comprehen-
sion of the complex map between genotype and phenotype is
an essential issue in the effort to understand the mechanisms
behind evolution and adaptation of populations, among oth-
ers their robustness in the face of perturbations or the appear-
ance of novelty.

There is abundant evidence of the existence of an ex-
tremely large degeneration between genotype and phenotype.
In other words, the same phenotype can be obtained from a
huge number of different genotypes. This ensemble forms
the neutral network of genotypes corresponding to a given
phenotype. The idea of neutral evolution was first introduced
by Kimura �1� in order to account for the known fact that a
large number of mutations observed in proteins, DNA, or
RNA, did not have any effect on fitness.

RNA sequences folding into their minimum free-energy
secondary structures are likely the most used model of the
genotype-phenotype relationship �2–4�. Analytical studies of
the number of sequences of length l compatible with a fixed
secondary structure �used as a proxy for the phenotype� have
revealed that the average size of the corresponding neutral
network grows as l3/2bl, where b is a constant �5�. Hence,
there should be about 1028 sequences compatible with the
structure of a transfer RNA �which has length l=76�, while
the currently known smallest functional RNAs, of length l
�14 �6�, could in principle be obtained from more than 106

different sequences. Neutral networks are astronomically

large even for moderate values of the sequence length.
Neutrality becomes particularly important in the evolution

of quasispecies �7�, populations of fast mutating replicators
which are formed by a large number of different
phenotypes—and many more genotypes—, and where high
diversity and the concomitant steady exploration of the ge-
nome space happen to be an adaptive strategy. Relevant ex-
amples of quasispecies of RNA molecules are RNA viruses
�8� and error-prone replicators in the context of the RNA
world �9�. Evolutionary innovation in quasispecies is facili-
tated by the fact that most neutral networks span the whole
space of genomes. Actually, taking again the case of the
RNA sequence-structure map as example, all common struc-
tures of length l can be found within a relatively small radius
�measured as the number of nucleotides that have to be
changed� of a randomly chosen sequence in genotype space
�10�, thus showing that neutral networks are deeply interwo-
ven. The mutual proximity of neutral networks in genome
space has received empirical support from studies showing
how two sequences differing in only two nucleotides can
fold and function as fully different ribozymes �11� and how
diffusion on neutral networks promotes innovation in the
evolution of influenza A �12�. Diffusion through neutral net-
works is thus regarded as an essential component of the ad-
aptation of quasispecies to changing environments, which
demand new functional phenotypes to guarantee survival.

In the absence of environmental changes, quasispecies
stay on the same neutral network and evolve toward regions
denser in neutral genotypes. In these regions, the probability
that upon replication a random mutation produces a sequence
with a different fold is minimized, such that mutational ro-
bustness is maximized. Models of evolution on neutral net-
works use to define genotypes as the nodes of the network;
two nodes are linked when their sequences are at a Hamming
distance of one, that is, when they differ in only one nucle-
otide �13,14�. In this scenario, and when the dynamics are
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dominated by selection, the equilibrium state of the popula-
tion only depends on the topology of the neutral network
�15,16�. However, the final state might depend as well on the
mutation rate when random drift becomes an important com-
ponent of the dynamics �17,18� or when links that extend
beyond nearest-neighbor sequences are considered �19�.

Despite the expected advantage that more neutral variants
should occasionally have in competition with fitter but less
robust types �20�, selection of highly neutral genotypes has
been observed in very few natural cases �21,22�. This partly
negative result admits different explanations. Among others,
it might be that high neutrality hinders evolvability �23� or
critically delays the recovery of the population after strong
reductions in its size �24�. In presence of stronger selection
of other phenotypic traits there might be tradeoffs that forbid
the simultaneous optimization of both of them. Finally, a
given environment should keep constant for a long enough
time as to allow the selection of highly neutral genotypes: if
the environment changes in time scales typically shorter than
those allowing the selection of high neutrality, the latter will
not be observed.

The scenario thus far described acts as motivation to un-
dertake the present study. In this work we address the evo-
lution of populations of replicators on artificial neutral net-
works with two goals in mind. First, we quantify the
transient time before equilibrium is reached and relate it to
the topological properties of the neutral network, with the
initial distribution of sequences on it, and with the mutation
rate. Second, we study the evolution of the population on
small networks where neutrality is broken by assigning an
energy to each node. In a final study of large, complex net-
works, nodes are explicitly represented by sequences, such
that their energy is a function of the composition of a se-
quence, as is known to occur in real cases �25,26�. The use of
two phenotypic characteristics, neutrality and energy, allows
then to mimic the competition between two different features
subjected to different selective pressures. The relative inten-
sity of selection is tuned through an appropriate selection
parameter. The examples we use in this study might not cor-
respond to any natural neutral network, but our results indi-
cate that they are able to capture the qualitative behavior to
be expected in more realistic cases. In particular, although a
neutral network can in principle be formed by an arbitrary
number of disconnected components �depending on se-
quence length and the secondary structure chosen�, we re-
strict our investigation to the evolution on a single connected
component of the total network.

The paper is organized as follows. In Sec. II we introduce
the specific dynamical system used and present general ana-
lytical results regarding evolution of an infinite population
on an arbitrary neutral network. In particular, we prove that
the time to equilibrium is inversely proportional to the mu-
tation rate. In Sec. III we assign an energy to each of the
nodes of our networks and present the dynamical equations
and some general analytical results when neutrality and sta-
bility are simultaneously under selection. In Sec. IV we dis-
cuss representative examples of small networks when neu-
trality and stability are positively and negatively correlated.
Of special interest is the case of a four-node network where
the sequence of minimal folding energy is that with the low-

est connectivity. This causes a nonmonotonic behavior of the
time to equilibrium with the selection parameter and sudden
transitions in the localization of the equilibrium states. Small
networks settle the bases to comprehend the phenomenology
observed in larger, more realistic networks with different to-
pologies investigated in Sec. V. We conclude with our main
results and an overall discussion in Sec. VI.

II. NEUTRAL NETWORKS OF IDENTICAL NODES

In this section we study the dynamics of a population of
individuals on a network where all nodes �sequences� have
the same selective value. The network is thus completely
specified through the adjacency matrix C of the correspond-
ing undirected, connected graph. Sequences replicate and
daughter sequences have a probability to mutate. The actual
dynamics of sequences are implemented in an effective fash-
ion, as will be shown. The results presented in Secs. II A and
II B 1 are known. They were reported in previous works
�15,16� and are here rephrased in the framework of our dy-
namical equations for completeness.

A. Definitions and dynamical equations

Each node i in the network holds a number ni�t� of se-
quences at time t. There are i=1, . . . ,m nodes in the network,
each with a degree �number of nearest neighbors� ki. The
total population will be maintained constant through evolu-
tion, N=�ini�t�, and we assume N→� to avoid stochastic
effects due to finite population sizes. The initial distribution
of sequences on the network at t=0 is ni�0�. Sequences of
length l formed by 4 different nucleotides have at most 3l
neighbors. We call �nn�i the set of actual neighbors of node i,
whose cardinal is ki. The vector k� has as components the
degree of the i=1, . . . ,m nodes of the network. At each time
step, the sequences at each node replicate. Daughter se-
quences mutate to one of the 3l nearest neighbors with prob-
ability �, and remain equal to their mother sequence with
probability 1−�. In our representation 0���1. The singu-
lar case �=0 is excluded to avoid trivial dynamics and guar-
antee evolution toward a unique equilibrium state. With
probability ki / �3l�, the mutated sequence exists in the neutral
network and it adds to the population of the corresponding
neighboring node. Otherwise, it falls off the network and
disappears, this being the fate of a fraction �1−ki / �3l��� of
the total daughter sequences. Note that, in this effective rep-
resentation, l simply controls the dilution of the network and
thus the relative fraction of viable vs nonviable mutants gen-
erated upon replication.

The mean-field equations describing the dynamics of the
population on the network read

ni�t + 1� = �2 − ��ni�t� +
�

3l
�

j=�nn�i

nj�t� . �1�

The dynamics can be written in matrix form as

n��t + 1� = �2 − ��In��t� +
�

3l
Cn��t� , �2�

where I is the identity matrix and C is the adjacency matrix
of the network, whose elements are Cij =1 if nodes i and j
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are connected and Cij =0 otherwise. The transition matrix M
is defined as

M = �2 − ��I +
�

3l
C . �3�

Let us call ��i� the set of eigenvalues of M, with �i
��i+1, and �u� i� the corresponding eigenvectors. The spectral
theorem states that, as M is real and symmetric, it admits the
decomposition

M = PGP−1 = PGPT, �4�

where P has the eigenvectors of M as columns and G is a
real diagonal matrix with the eigenvalues of M ordered along
the diagonal. Furthermore, its eigenvectors verify u� i ·u� j =0,
∀i� j and 	u� i	=1, ∀i.

Since M is a primitive matrix �39�, the Perron-Frobenius
theorem assures that, in the interval of � values used, the
largest eigenvalue of M is positive, �1� 	�i	, ∀i�1, and its
associated eigenvector is positive �i.e., �u�1�i�0, ∀i�.

The dynamics of the system, Eq. �2� can be thus written
as

n��t� = Mtn��0� = �
i=1

m

�i
t	iu� i, �5�

where we have defined 	i as the projection of the initial
condition on the ith eigenvector of M,

	i = n��0�u� i. �6�

Furthermore, as �1� 	�i	, ∀i�1, the asymptotic state of
the population is proportional to the eigenvector that corre-
sponds to the largest eigenvalue, u�1,

lim
t→�


 n��t�
�1

t 	1
� = u�1, �7�

while the largest eigenvalue �1 yields the growth rate of the
population at equilibrium �in the absence of rescaling�. For
convenience, in the following, and without any loss of gen-
erality, we normalize the population n��t� such that 	n��t�	=1
after each generation. With this normalization, n��t�→u�1
when t→�.

B. Results

1. Network topology and asymptotic states

Let us call �
i� the set of eigenvalues of matrix C, 
i
�
i+1, and �w� i� the set of corresponding eigenvectors. From
Eq. �3�,

Mw� i = �2 − ��Iw� i +
�

3l
Cw� i = ��2 − �� +

�

3l

iw� i. �8�

The eigenvectors of the adjacency matrix are also eigenvec-
tors of the transition matrix, u� i�w� i, ∀i, demonstrating that
the asymptotic state of the population only depends on the
topology of the neutral network. The eigenvalues of both
matrices are thus related through

�i = �2 − �� +
�

3l

i, �9�

where the set �
i� does not depend on the mutation rate �.
The adjacency matrix contains all the information on the
final states, while the transition matrix yields quantitative
information on the dynamics toward equilibrium.

The minimal value of �1 is obtained in the limit of a
population evolving at a very high mutation rate ��→1� on
an extremely diluted matrix �l→��. In this limit, all eigen-
values of M become asymptotically independent of the pre-
cise topology of the network and �i→1, ∀i. In this extreme
case all daughter sequences fall off the network, but the
population is maintained constant through the parental popu-
lation. An extinction catastrophe �due to a net population
growth below one �30�� never holds under this dynamics.

The average degree K�t� of the population at time t is
defined as

K�t� =
k� · n��t�

�
i

ni�t�
. �10�

In the limit t→�, we obtain the average degree at equilib-
rium

K�t → �� = K =
k� · u�1

�
i

�u1�i

. �11�

We define as kmin, kmax, and �k�=�iki /m the smallest, larg-
est, and average degree of the network, respectively. The
Perron-Frobenius theorem for non-negative, symmetric, and
connected graphs, sets limits on the average degree �k�:
when kmin�kmax, that is, as far as the graph is not homoge-
neous,

kmin � �k� � 
1 � kmax �12�

holds. A simple calculation �based on the identity between
the eigenvectors of the adjacency matrix C and the transition
matrix M� yields that the average degree of the population at
equilibrium, K, is equal to the largest eigenvalue 
1 of the
adjacency matrix, also known as the spectral radius of the
network �15�. Therefore, from Eq. �12� we obtain that the
average degree K of the population at equilibrium will be
larger than the average degree �k� of the network, indicating
that when all nodes are identical the population selects re-
gions with connectivity above average.

2. Dynamics toward equilibrium

Equation �5� describes the transient dynamics toward
equilibrium starting with an initial condition n��0�. The dis-
tance ��t� to the equilibrium state can be written as

��t� � �Mtn��0�
�1

t 	1

− u�1� = ��
i=2

m

�i
��t�� = ��

i=2

m
	i

	1

 �i

�1
�t

u� i� .

�13�

In order to estimate how many generations elapse before
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equilibrium is reached, we fix a threshold �, and define the
time to equilibrium t� as the number of generations required
for ��t����.

When 	2�0, �2�0, and �2��3, t� can be approximated
to first order by

t�
1 �

ln		2/	1	 − ln �

ln	�1/�2	
. �14�

This approximation turns out to be extremely good in most
cases thanks to the exponentially fast suppression of the con-
tributions due to higher-order terms �since �i��i+1, ∀i�. It
may lose accuracy, however, when �3��2, when the initial
condition n��0� is such that 		3	 		2	, or when � is so large
that the population is far from equilibrium and ��t� is still
governed by �3 and higher-order eigenvalues.

Formally, Eq. �14� will accurately estimate t� if 	�3
��t�	

� 	�2
��t�	 in the development of Eq. �13�,

�	2

	1
���2

�1
� t�

� �	3

	1
���3

�1
� t�

. �15�

For arbitrary topologies and initial conditions, the previous
inequality implicitly defines a value �c below which it always
holds. Using Eq. �14� to approximate the value of t�, we can
estimate in a self-consistent fashion that, ∀� fulfilling

� � �c = �	2

	1
�exp�−

log�	3

	2
�log��1

�2
�

log��2

�3
� � �16�

the time t�
1, as explicitly obtained from Eq. �14�, accurately

approximates t�, as implicitly defined by Eq. �13�. Examples
of different situations are shown in Fig. 1, showing that t�

1 is
generically a good approximation when a sufficiently small
distance � to equilibrium is required.

The functional relationship between the time to equilib-
rium and the mutation rate can be obtained by developing
Eq. �14� in powers of �,

t�
1 = ln
� 	2

�	1
��� a

�
+ b − c� + O��2� , �17�

where

a =
6l

�
1 − 
2�
, b =


1 + 
2 − 6l

2�
1 − 
2�
, c =


1 − 
2

72l
. �18�

Since c�a, the dependence of the time to equilibrium
with the mutation rate follows t�

1��−1, and therefore � sets
the rate at which equilibrium is approached, for a fixed to-
pology of the neutral network. Finally, changes in the adja-
cency matrix also affect how fast equilibrium can be reached,
through the values of 
1 and 
2.

3. Exactly solvable examples

Consider a star formed by m nodes, 1 in the center with
connectivity m−1 and m−1 nodes in the periphery with con-
nectivity 1. The adjacency matrix has eigenvalues �
i�
= ��m−1,0 ,0 ,0 , . . . ,0 ,0 ,−�m−1�. This implies that the ei-
genvalues of the transition matrix for this case read

�1 = �2 − �� +
�

3l
�m − 1,

�i = �2 − ��, 2 � i � m − 1,

�m = �2 − �� −
�

3l
�m − 1. �19�

The eigenvectors for both matrices are u�1= �2m
−2�−1/2��m−1,1 ,1 ,1 , . . . ,1 ,1�, u�m= �2m−2�−1/2�−�m−1,1 ,
1 ,1 , . . . ,1 ,1�, and u� i=2−1/2�0,−1,0 ,0 , . . . ,0 ,1 ,0 ,0 , . . . ,0�,
where 1 is at the position i+1, for 2� i�m−1.

Let us consider the initial condition n��0�
=N−1/2�1,1 ,1 , . . . ,1 ,1�. The values of the coefficients 	i be-
come

	1 = u�1 · n��0� =
1

�2N
�1 + �m − 1� ,

	i = u� i · n��0� = 0, 2 � i � m − 1,

	m = u�n · n��0� =
1

�2N
�− 1 + �m − 1� . �20�

This case is interesting because, for an homogeneously dis-
tributed initial population, the distance to equilibrium is
dominated by the smallest eigenvalue. According to Eq. �13�,
we obtain the exact result

��t� =
− 1 + �m − 1

1 + �m − 1

 �2 − �� − �/�3l��m − 1

�2 − �� + �/�3l��m − 1
�t

, �21�

from where the exact time to equilibrium can be explicitly
obtained, once the threshold distance ��t��� is fixed. If we
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FIG. 1. Sketch of the evolution with time of the distance to the
equilibrium state ��t� ���, 	�2

��t�	 �solid line� and 	�3
��t�	 �dashed

line�. Two different cases are plotted: �a� If 		2	� 		3	, then ��t�
�	�2
��t�	, ∀t and Eq. �14� is valid ∀�. �b� When 		3	 		2	 and

	�3	�	�2	, t�
1 yields an accurate estimation of t� if ���c.
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develop the time to equilibrium in powers of the number of
nodes m and the mutation rate �, we obtain t���−1 �in
agreement with the generic dependence derived in Eq. �17��,
and t��m−1/2. This latter result depends on the topology of C
and thus is not generic.

Take as a second example the case of a completely
connected network, where Cij =1, ∀i� j. Now 
1=m−1, 
i
=−1, ∀i�1, u�1=m−1/2�1,1 , . . .1 , ,1�, and u� i=2−1/2�−1,0 ,
. . . ,0 ,1 ,0 , . . . ,0�, where 1 is at the position i, for �2� i
�m�. Repeating the development above, we can also obtain
the exact expressions for the distance to equilibrium ��t� and
the time to equilibrium t�. In this case, the initial condition
will be n��0�= �1,0 ,0 , . . . ,0� �40�, which implies 	1= 1

�m
and

	i=− 1
�2

, ∀i�1. The distance to equilibrium becomes

��t� = �	2

	1
���2

�1
���

i=2

m

u� i� , �22�

=
m�m − 1

2
� �2 − �� − �/�3l�

�2 − �� + �/�3l��m − 1�
� t

. �23�

As previously, we develop the time to equilibrium t� in
powers of the mutation rate � to obtain t���−1. When de-
veloping it in powers of the number of nodes m, we obtain
that t� depends on m in a functionally complex manner, but,
asymptotically, t�→3 /2 when m→� , ∀� ,� , l.

III. NEUTRAL NETWORKS OF DISTINGUISHABLE
NODES

Genotypes are not identical from a strict point of view, be
it only because their sequences are different. Changes in se-
quence composition may affect the processivity of a genome,
the strength of interaction with other molecules or, in the
case we are considering, the energy of the folded state. In
this section, we label each node with an additional parameter
Ei which can be understood as a measure of the thermody-
namical stability of the corresponding sequence. To begin
with, we do not constrain the range of values of Ei and do
not relate it with any other property of the node.

We will define the probability pi that a sequence stays at a
particular node as a function of its energy: the higher Ei, the
lower the probability of occupation of node i,

pi = exp�− ��Ei − Emin�� , �24�

where the minimum energy in the network Emin serves to
normalize the probability, 0� pi�1. The selection parameter
� quantifies the intensity of selection for energy versus se-
lection for neutrality. In the limit �→0 one recovers the
results of the case where nodes are identical, while in the
limit �→� we expect the population to concentrate at the
nodes with minimum energy.

A. Dynamical equations

With the introduction of selection for energy, the dynami-
cal equations become

ni�t + 1� = ��2 − ��ni�t� +
�

3l
�
�nn�i

nj�t�e−��Ei−Emin�, �25�

and in matrix form

n��t + 1� = ��2 − ��EI +
�

3l
ECn��t� . �26�

The transition matrix reads

M� = E��2 − ��I +
�

3l
C = EM , �27�

where E is a diagonal matrix with elements Eij
=e−��Ei−Emin��ij, and M is the transition matrix for the case of
identical nodes. Let us call ��i� the set of eigenvalues of M�,
with �i��i+1, and �u� i� and �u� i

L� its corresponding sets of
right and left eigenvectors. The matrix M� is not symmetric,
but it is symmetrizable, thus admitting the decomposition

M� = QHQ−1, �28�

where H is a diagonal matrix �41�.
As M� is not symmetric, its left and right eigenvectors do

not coincide: Q has the right eigenvectors of M� as columns,
Q−1 has the left eigenvectors of M� as rows, and H is a
diagonal matrix with the eigenvalues of M� ordered along
the diagonal. Furthermore, in general u� i ·u� j�0 and u� i

L ·u� j
L

�0, ∀ i , j. However, u� i ·u� i
L=1 and u� i ·u� j

L=0, ∀i� j. Finally,
as M� is primitive as far as 0���2, it follows that the
highest eigenvalue and its associated eigenvector are posi-
tive, and �1� 	�i	, ∀i�1. We will maintain the normaliza-
tion 	u� i	=1, which in general implies 	u� i

L	�1.
The dependence with the selection parameter � acquired

by the eigenvalues and eigenvectors of M� preclude them
from bearing any simple relation with the eigenvalues and
eigenvectors of the adjacency matrix, contrary to what hap-
pened in the case of indistinguishable nodes. Still, the formal
solution to the dynamics is similar to Eq. �5�,

n��t� = M�tn��0� = �
i=1

m

�i
t	i

Lu� i, �29�

where 	i
L is the projection of the initial condition n��0� on the

ith left eigenvector u�L of M�,

	i
L = n��0�u� i

L. �30�

The asymptotic state of the population is again given by u�1,
which in this case corresponds to the right eigenvector asso-
ciated to the largest eigenvalue �1.

B. Formal results and relevant quantities

In the case of distinguishable nodes, it is not possible to
obtain an explicit analytical dependence of the distance and
the time to equilibrium as a function of � and �, since to-
pology and energy cannot be decoupled. Still, expressions
analogous to Eqs. �13� and �14� are valid in this case. The
distance ��t� to the equilibrium state can be written as
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��t� � �M�tn��0�
�1

t 	1
L − u�1� = ��

i=2

m
	i

L

	1
L
 �i

�1
�t

u� i� , �31�

and the time to equilibrium is approximated to first order by

t�
1 �

ln		2
L/	1

L	 − ln �

ln	�1/�2	
, �32�

where, as before, we assume that the population has reached
the equilibrium state when ��t���, and ���c.

The introduction of the selection parameter � changes
qualitatively the behavior of the system. Now there are two
opposite forces: one tends to attract the population toward
regions of maximal connectivity—or neutrality—�as shown
in Sec. II B 1�; the second does similarly toward regions of
low energy—or high stability. The relative strength of these
two selection pressures is tuned through �.

In the next two sections we are going to analyze the dy-
namics of the population as a function of the selection pa-
rameter � and the mutation rate �, both during the transient
toward equilibrium and at equilibrium. To this end we define
two additional quantities, the average energy of the equilib-
rium distribution E and its average dispersion D. The aver-
age energy of the population E�t� at time t is defined as

E�t� =
E� · n��t�

�
i

ni�t�
, �33�

where E� is a vector whose element i is the energy corre-
sponding to node i. When t→�, we obtain the average en-
ergy of the equilibrium distribution,

E = E�t → �� =
E� · u�1

�
i

�u1�i

. �34�

The average dispersion is a measure of how spread is the
population on the network. We define it as the average over
the minimum distance �in number of links, i.e. the minimum
path� to go from node i to node j weighted by the corre-
sponding populations. We thus define the distance matrix D
as the matrix whose element Dij is the minimum path be-
tween nodes i and j. If i and j are connected Dij =1, while the
diagonal of D fulfills Dii=0. For a finite population of size
N�t�, the average dispersion DN�t� at time t is

DN�t� =
n��t�Dn��t�TN2�t�


�
i

ni�t��2
N�t��N�t� − 1�

, �35�

where n��t� is the population as a row vector and n��t�T is the
population as a column vector. In the limit N�t�→� this
expression becomes

D�t� =
n��t�Dn��t�T

��
i

ni�t�2 , �36�

and when t→�, we obtain the average dispersion at equilib-
rium,

D = D�t → �� =
u�1Du�1

T


�
i

�u1�i�2 . �37�

The minimum value of D=0 is attained when the population
occupies a single node, while its maximum value, D
=DM /2 corresponds to half the population sitting at each of
the two nodes for which Dij =DM is maximum.

IV. EXACTLY SOLVABLE EXAMPLES OF NETWORKS
WITH DISTINGUISHABLE NODES

In order to analyze the evolution of the populations with
time or when the parameters are varied, we will pay special
attention to four relevant quantities: the time t� that the popu-
lation takes to reach the equilibrium state, �obtained from Eq.
�31��, the average degree K of the population, Eq. �10�; the
average energy E, Eq. �34�, and the average dispersion D,
Eq. �37�, the last three properties measured at equilibrium.
Before attempting the numerical study of large, complex net-
works, to be presented in Sec. V, we analyze in this section
two examples of networks with three and four nodes, since
they allow full analytical treatment.

A. Three-node network

Consider the three-node network shown in Fig. 2�a�,
where one node with degree k=2 and folding energy E1 is
connected to two nodes of degree k=1 and folding energy
E2. This is the simplest network containing nodes with dif-
ferent neutrality and energy. The matrix M� is built follow-
ing Eq. �27�.

The corresponding eigenvalues are

FIG. 2. �a� Schematic representation of the three-node network.
In �b�–�d� the radius of the nodes is proportional to their occupancy
at equilibrium. In �b�, the ratio � /�=0 and the fraction of popula-
tion in the central node is larger due to its higher degree �k1=2�. In
�c� and �d�, � /�=0.05, with positive correlation �NS+ , E1

=1, E2=2� in �c� and negative correlation �NS− , E1=2, E2=1� in
�d�. l=25 in all cases. These two plots show the relevance of the
degree-stability correlation in the final distribution of the
population.
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�1,3 =
�2 − ���p1 + p2�

2

��
�2 − ���p1 − p2�
2

�2

+ 2p1p2
 �

3l
�2

, �38�

�2 = �2 − ��p2. �39�

Since the second term under the square root above is much
smaller than the first one, we can write

�1,3 � �2 − ��p�1,2� �
2p1p2

	p1 − p2	 
 �

3l
�2

, �40�

where �1 always corresponds to the largest pi in the first term
on the right.

The right and left eigenvectors u� i and u� i
L associated read

u�1,3 =
�− A � B,1,1�
�2 + �B � A�2

, �41�

u�1,3
L = �2 + �B � A�2B � A

4B

 2

A � B
,1,1� , �42�

u�2 = u�2
L =

1
�2

�0,− 1,1� , �43�

where A=
3�p2−p1��2−��l

2p2� , B=�A2+
2p1

p2
, p1=exp�−��E1−Emin��,

and p2=exp�−��E2−Emin��.
As �1��2��3, ∀E1, E2, l, and ��0, the eigenvector u�1

obtained from Eq. �41� represents the equilibrium distribu-
tion for every set of parameters �� ,� , l ,E1 ,E2�.

1. Equilibrium properties

The explicit expressions obtained for eigenvalues and
eigenvectors yield as well analytic solutions for the average
energy E, the average degree K, and the average dispersion
D. In what follows, we analyze the variation of these quan-
tities with the stability parameter � and the mutation rate �
in two different regimes characterized by a different relation-
ship between energy and degree of each node. Note that
more energy means less stability, and vice versa:

�i� Regime NS+: neutrality and stability are positively cor-
related �E1�E2�.

�ii� Regime NS−: neutrality and stability are negatively
correlated �E1�E2�.

From Eq. �41�, we can write the equilibrium distribution
as u�1= 1

���u1�1
��2+2

��u1�1
� ,1 ,1�. Developing the term �u1�1

� in se-

ries of � and � �for ����, we can obtain valuable informa-
tion on how E, K, and D vary with the two parameters,

�u1�1
� � �2 −

3l

2
�E1 − E2�
2 − � +

�2�

3l
��

�
+

9l2

2�2
�E2

− E1�2
1 − � +
�2�

3l
��2

�2 , �44�

plus terms of order �� /��3. Since the relevant range of mu-

tation rate values holds for ��1, we can discard the terms
proportional to � added to terms of order one. Hence, the
equilibrium state becomes a function of the ratio � /� in a
first approximation, u�1�F� �� /� , l ,E1 ,E2�. As a conse-
quence, and as far as � is not too large, E, K and D also
depend on � and � through � /�. We will see in Sec. V that
this is a good approximation for much larger and more com-
plex networks, giving a quantitative basis to the opposite and
symmetric actions of �, enhancing selection of lower energy
configurations, and �, supporting evolution toward highly
neutral states.

Figure 3 shows u�1, E, K, and D as a function of � /�. The
curves have been plotted varying � for three different values
of �, and all data collapse on the same curve, supporting the
validity of approximating u�1 and thus the quantities that de-
pend on it as functions of the ratio � /�. Furthermore, in Fig.
3�a� we see that in both regimes, NS+ and NS−, the equilib-
rium distribution is u�1=2−1��2,1 ,1� when � /�=0 �see also
Fig. 2�b� for a schematic�, representing the case where en-
ergy does not affect the system ��=0 and p1= p2=1�. How-
ever, when � /� grows the results are highly dependent on
the distribution of neutrality versus energy in the network. In
regime NS+ �that is, when the central node of degree k=2 has
the lowest energy, E1=1� if � /� increases, the whole popu-
lation moves toward the central node, as shown in Fig. 2�c�.
For this reason, we can observe in Fig. 3�b�–3�d� that, in this
regime, E, K, and D asymptotically tend to the properties of
node 1 when � /�→�: E→E1=1, K→k1=2, and D→0. On
the contrary, in the regime in which nodes 2 and 3 �with low
neutrality, k=1� are more stable �NS−�, the population
evolves toward these nodes, depleting the central node �see
Fig. 2�d��. The average energy, degree and dispersion of the
population now tend to the values that they reach when the
total population is equally distributed between nodes 2 and 3:
E→E2=1, K→k2=k3=1, and D→1 when � /�→�.
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FIG. 3. Dependence of the equilibrium properties of the three-
node network on � and � for regimes NS+ �E1=Emin=1, E2=2,
solid line� and NS− �E1=2, E2=Emin=1, dashed line�. Each curve
is plotted for �=0.001 ���, 0.01 �line� and 0.05 ���. The length of
the sequence is l=25. �a� Equilibrium distribution. Note that �u1�2

= �u1�3 for symmetry. �b� Average energy E. �c� Average degree K.
�d� Average dispersion D.
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2. Time to equilibrium

As has been shown, the time t�
1 that a population takes to

reach the equilibrium distribution starting from an initial
condition n��0� �see Eq. �32�� approximates well the actual
time to equilibrium t� �obtained from Eq. �31�� for small
enough values of �. In the following, working again in the
approximation ��1, we will derive the scaling form of t�

1

with the parameters � and � for the three-node network. To
this end, we define t�

1=F1F2 and will develop to main orders
in � and � the two functions F1=ln		2

L /	1
L	−ln � and F2

= �ln	�1 /�2	�−1.
Let us write u�1

L= ��u1
L�1 , �u1

L�2 , �u1
L�3� and recall Eqs. �42�

and �43�. In this particular network, u�2
L happens to be inde-

pendent of � and �. To make the calculation explicit, we
consider as example the initial condition n��0�= �0,1 ,0� �42�.
Hence, 	1

L= �u1
L�2, and 	2

L=−1 /�2 is independent of � and �
�as u�2

L also is�. The only relevant term in the development of
F1 is �u1

L�2, for which the expression

�u1
L�2 �

1

2
−

3l��E�
4�2

�

�
−

9l2��E�2

32

�2

�2 + O
�

�
�3

�45�

holds for ��� and ��1, with �E=E2−E1. Substituting in
the definition of F1 and developing again,

F1 � ln
�2

�
� +

3�2l��E�
4

�

�
+

9l2��E�2

8

�2

�2 + O
�

�
�3

.

�46�

The function F2 can be directly developed in powers of �
and � substituting Eqs. �38� and �39� in the definition of F2
to obtain

F2 � 
1

2
−

3l
�2

� +
1

�
�3�2l − 9l2��E�

�

�
+

27l3��E�2

2�2

�2

�2

+ O
�

�
�3 �47�

such that, finally,

t�
1 � −

3�2l − 1

4
ln
 2

�2� +
1

�
� 3l

�2
ln
 2

�2�
+

9��E�l2�2 ln � − ln 2 + 1�
2

�

�
+ O
�

�
�2 �48�

The first term of t�
1 in Eq. �48� is negligible with respect to

the second term. This implies that the resulting scaling form
of the time to equilibrium is

t�
1 �

1

�
F
�

�
,l,E1,E2� . �49�

Figure 4 summarizes the dependence of different vari-
ables on the parameters � and �. In all cases, we have used
the initial condition n��0�= �0,1 ,0�. Figures 4�a� and 4�b�
show the variation in the eigenvalues �1, �2, and �3 of the
transition matrix M� as � increases in the two regimes NS+

and NS−, respectively. As Eqs. �31� and �32� specify, the
relation between the different eigenvalues is critical to deter-

mine the time required to reach the equilibrium distribution.
In general, it is the ratio �1 /�2 what determines whether this
time will be long or short: if �2→�1, t�→� while it is much
smaller if �2��1. In Fig. 4�a�, we see that �1�2��3. As
��1 /�2� grows slowly with �, the corresponding time to
equilibrium, plotted in Fig. 4�c�, will slowly decrease with �.
In Fig. 4�b�, however, �2 has come close to �1: �1=�2 at
�=0, and their distance grows as �2, see Eq. �40�. As a
consequence, when � grows the time to equilibrium de-
creases, but as in this case �1��2, t� might reach compara-
tively high values �see Fig. 4�d��. Figures 4�e� and 4�f� show
the eigenvalues of the system when � is varied, while Fig.
4�g� and 4�h� depict the corresponding time to equilibrium.
When � grows, �2 significantly differs from �1 in regime
NS+, while �1=�2+O��2� in regime NS−. Therefore, � fa-
cilitates to reach equilibrium when neutrality and stability
are positively correlated, but slows down the movement
when they are negatively correlated. Finally, Figs. 4�i� and
4�j� show the relation between the rescaled times to equilib-
rium �t� and �t�

1 with � /� for three values of � and regimes
NS+ and NS−, respectively. Numerical data approximately
collapse on the same curve, which supports the scaling Eq.
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FIG. 4. Dependence of the eigenvalues of the transition matrix
�i and the time to equilibrium t� of the three-node network on � and
�. The left-hand plots correspond to the NS+ regime �E1=Emin

=1, E2=2�, while the right-hand plots correspond to the NS− re-
gime �E1=2, E2=Emin=1�. The length of the sequence is l=25. �a�
and �b� �i when � is varied, with �=0.005. �c� and �d� t� when � is
varied and �=0.005. �e� and �f� �i when � is varied and �=0.05.
�g� and �h� t� when � is varied and �=0.05. �i� and �j� Dependence
of �t� on � /�. Each curve is plotted for �=0.001 ���, 0.01 �solid
line� and 0.05 ���. The corresponding value obtained with the ap-
proximation yielded by t�

1 is indistinguishable from the exact result
up to the resolution of the figure.
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�49�. Furthermore, the accuracy of t� as compared to t�
1 in Eq.

�31� in estimating the time to equilibrium is shown by the
fact that both curves are indistinguishable up to the reso-
lution of the figure.

In summary, when the mutation rate � grows in a three-
node network the time to equilibrium decreases monotoni-
cally, no matter what regime we are in. Furthermore, the time
to equilibrium is several orders of magnitude higher in re-
gime NS− than in regime NS+. The reason is that in regime
NS− the population is obliged to spread on the network suf-
fering two opposite forces: one pushes it toward the most
connected region while the other one pushes it toward the
most stable part of the network, and these two regions do not
coincide. On the contrary, in regime NS+ both pressures sup-
port the movement toward the same region of the network,
making the evolution much faster.

B. Four-node network

Some properties of large networks, which are not ob-
served in the three-node network due to its extreme simplic-
ity, arise naturally in four-node networks. For this reason, we
study in this section the network shown in Fig. 5�a�, formed
by one node with degree 3, two with degree 2, and one with
degree 1. As it happened with the three-node system, the
dynamics will strongly depend on the regime in which the
network is. If neutrality and stability are positively corre-
lated, the dynamics will be very similar to the three-node
case in the same regime: the population will always tend to
the most neutral region of the network, and increases in �
will just enhance this tendency �see Figs. 5�b�, 5�c�, and
5�e��. However, in regime NS− the phenomenology shows an
important new feature: for intermediate values of � /�, the
population might migrate to a region which represents a
compromise between the two limit cases of maximum neu-
trality �� /�→0� and minimum energy �� /�→�� �see Fig.
5�b�, 5�d�, and 5�f��.

Figure 6 summarizes the properties of the four-node net-
work when neutrality and stability are negatively correlated.
All quantities in Fig. 6�a�, 6�b�, and 6�d� can be calculated
analytically, and are plotted for a wide range of � and three
values of �. The coincidence of the curves in �a� and �b� for
different values of � shows that the eigenvector u�1, and
therefore E, K, and D, are functions of � /�. The coincidence
of the curves in �d� implies that t�� 1

�F�� /� , l ,E1 ,E2 ,E4�,
as obtained for the three-node network. As M� is a 4�4
matrix, these dependencies can be obtained explicitly, though
the expressions are much more involved, and will not be
presented here.

In Fig. 6�a� we can see the evolution with � /� of the
equilibrium distribution. Due to symmetry, �u1�2= �u1�3,
∀� ,�. When �=0 and the nodes are indistinguishable �see
Fig. 5�b��, the population spreads searching for neutrality,
and therefore most of it is in node 1 �where k=3�, a little less
in nodes 2 and 3 �where k=2�, and very little population can
be found in node 4 �where k=1�. When � /� increases, the
population moves toward nodes 2 and 3 �see Fig. 5�d��, the
average energy E→E2=E3=2, and the average degree K
→k2=k3=2. Nodes 2 and 3 are less neutral and have lower

energy than node 1, but are more neutral and have higher
energy than node 4, therefore behaving as an intermediate
situation between the initial search for neutrality and the final
migration toward the region of lowest energy in the network.
When � /� is increased slightly further, the population keeps
on filling nodes 2 and 3, beginning simultaneously to occupy
node 4, located in the opposite side of the graph. In fact,
there is a critical value �� /��B�0.075 for which all stable
nodes �2, 3, and 4� are very populated, while that with the
highest connectivity �node 1� is almost empty. This is clearly
signaled with a maximum in the time to equilibrium and in
the average dispersion. When � /� crosses the critical point
�marked with B in Fig. 6�c� and 6�d�� the population finally
migrates toward node 4 �see Fig. 5�f��, which is the most
energetically stable. When � /�→�, the equilibrium proper-
ties of the population tend to their asymptotic values E
→E4=1.9, K→k4=1 and D→0.

Figure 6�c� shows the dependence of the eigenvalues �i
with the stability parameter �, for �=0.05 �they are repre-
sented against � /� just to compare with the other plots�. In
the three-node system, t� varied monotonically with � for all
regimes, increased with increasing � in the NS+ regime and

FIG. 5. �a� Schematic representation of the four-node network.
In �b�–�f� the radius of the nodes is proportional to the size of the
population in the equilibrium state. The parameters are E1=Emin

=1.9, E2=E3=2, E4=4 for the NS+ regime, and E1=4, E2=E3=2,
E4=Emin=1.9, for the NS− regime; l=25. In the case of positive
correlation �NS+� the largest fraction of the population is always at
the most connected node, and increases as � /� grows ��b�, �c� and
�e��. On the contrary, when the degree-stability correlation is nega-
tive �NS−�, the distribution of the population is very sensitive to the
value of � /�, which determines whether most of the population is
located at the most connected node �b�, is spread in an intermediate
situation, �d� or occupies the most stable node �f�.
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vice versa in the NS− regime. In the four-node system, in the
NS+ regime the relation �1 /�2 �which dominates t� for most
values of the parameters� also grows monotonically in most
cases with � and �. Therefore, t� generically decreases when
any of these two parameters grow. However, in the NS− re-
gime �the case plotted in Fig. 6�, the two largest eigenvalues
�1 and �2 approach each other when � /�� �� /��B and
move apart when � /�� �� /��B. They do not cross, how-
ever, as demonstrated by the Perron-Frobenius theorem �see
Sec. III�. The rescaled time to equilibrium, plotted in Fig.
6�d�, shows a maximum when the difference between the
two eigenvalues becomes minimum.

In Fig. 6�d� we have plotted t� and t�
1 in the same plot. As

it happened in the three-node network, both quantities are
indistinguishable up to the resolution of the figure. Further-
more, the effect of the initial condition n��0� in t� is especially
relevant in certain parameter range. This is the case of values
of � and � for which 		2

L	= 	n��0�u�2
L	� 		1

L	= 	n��0�u�1
L	, causing

the term ln		2
L /	1

L	 in Eq. �32� become of the order of ln���.
In Fig. 6�d�, this effect is especially important around � /�
�0.068 �� in the plot�, for which 	2

L�0, thus producing a
severe minimum in the time to equilibrium.

Finally, Fig. 7 shows the evolution of eigenvectors u�1 and
u�2 in the vicinity of the critical point B �points A, B, and C
are also marked in Figs. 6�c� and 6�d��. Both eigenvectors
have been projected over the two first eigenvectors in region
A, u�1A, and u�2A, corresponding to the value � /�=0.035. The
vertical axis thus represents the scalar product u� i .u� jA, for
i , j=1,2. As u�1 and u�2 go through the critical value � /�
�0.075, they seem to exchange gradually their roles �but
note that u�1 is a positive vector, while u�2 is not�. As a direct
consequence, near B the population spreads over a signifi-
cantly large region of the network that contains the populated
nodes in region A and in region C, thus resulting in a maxi-
mum for the average dispersion of the population D at B. In
summary, the mutual influence between eigenvalues and

eigenvectors is the key to understand the migrations that a
population might suffer when the system parameters are var-
ied.

V. COMPLEX NETWORKS

The goal of this section is to extend our results to more
complex networks, in order to show the generality of the
dynamics and methods discussed in previous sections. Two
different kinds of test networks are presented and analyzed:
the random mutation network and the preferential mutation
network. Each node will be now explicitly represented by a
sequence whose energy will depend on its composition. The
links in each network respect the basic rules underlying natu-
ral RNA neutral networks.

A. Network construction

Random mutation �RM� and preferential mutation �PM�
networks are constructed starting with a genomic sequence
of length l. New sequences �nodes� are progressively added
in such a way that the growing network is always connected.

In the RM network, each sequence in the network has
probability q=1 /M��� to be chosen at step � to generate a
new sequence through a single mutation, being M��� the
number of nodes at step �. Initially, M�1�=1 and the seed
sequence is thus chosen with probability q=1. One of the
nucleotides in the selected sequence, randomly chosen, is
then mutated and the two sequences are linked. Further, the
new sequence is linked to any other sequence in the network
which is at a Hamming distance of one. The procedure is
repeated until �=m, thus generating a connected network
with M�m�=m nodes.

The expected degree �kt� of the sequence introduced at
step � is
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�k�� = 1 + �
i=�+1

m−1
1

i
, �50�

where, in a first approximation, we have discarded the links
due to sequences at a Hamming distance of one different
from the mother sequence of the new node. This expression
works well for l1 and m�4l, a regime where networks are
diluted and the number of triangles is small. In the regime
where m��1, we can substitute the sum by an integral to
obtain �k���1+ln�m−1�−ln��+1�. This function is actually
a Zipf ordering of the degree k of the nodes as a function of
their rank �which, in turn, is equal to the step of insertion in
the network ��. The inverse function ��k� stands for the num-
ber of nodes with degree larger than k. Hence, if we define
mk=mPRM�k� as the number of nodes with degree k—where
PRM�k� is the probability density distribution of the
degree—, the relation

��k� = �
k

�

PRM�k��dk� �51�

holds for m��1. Within this approximation, and by virtue
of Eq. �51�, the maximum degree expected is kmax� ln m.

Finally, we obtain that the degree distribution decays as

PRM�k� � e−k. �52�

A different derivation of this result has been presented in
previous publications studying networks growing through a
random attachment model in a mean-field approximation
�31–33�. It was shown that the average number �c� of links
per added node changes the slope of the exponential distri-
bution, such that PRM�k��e−k/�c�. In our model, relatively
small values of l lead to the introduction of additional links
to those sequences at a Hamming distance of one, thus modi-
fying quantitatively �not qualitatively� the exponential de-
gree distribution derived.

The algorithm used to construct the PM network is in-
spired in the Barabási-Albert �BA� preferential attachment
model of network growth �34�. The BA model successfully
describes the heterogeneity in the degree distribution of
many biological, technological and social networks �35,36�.
These networks are characterized by a degree distribution
that follows a power law, and by the presence of highly
connected nodes, known as hubs. In our case, the network
growth process is similar to the one proposed for the RM
networks, but in this case the probability q that a node i is
selected to mutate and thus generate a new node in the net-
work depends on the degree ki of the node and varies with
the step: q=ki /�iki, for i=1, . . .M���. As expected, the PM
networks obtained with the BA model are characterized by
the existence of hubs and a truncated power-law decay in
their degree distributions, the latter due to the fact that in
neutral networks the highest degree has an upper bound of
3l, being l the length of the sequence. The expected degree
distribution is given by the preferential attachment BA
model,

PPM�k� � Ck−3, �53�

where the maximum degree expected grows as kmax�m1/3

�for 4lm �3l�3 and kmax�3l�. Within the approximation
l1 and m�4l, the correction due to links caused by pre-
existing sequences at Hamming distance of one �different
from the mother sequence� is small and does not affect the
functional form above, only modifying the proportionality
coefficient C.

Despite the deviations from the predicted maximum de-
gree and from the distributions PRM�k� and PPM�k� expected
for small m and finite l, the quantities derived above serve to
illustrate the topological differences in networks constructed
following one or another algorithm �31–33�. These differ-
ences have a remarkable effect in the dynamics of the popu-
lation, as will be shown in the next section.

The energy associated to each sequence in the network
will be now defined as a function of its composition. It is
well known that the minimum free energy of an RNA sec-
ondary structure depends on the nucleotidic composition of
the sequence folding into it �25,26�. Approximately, pairs
G-C decrease the energy of an open structure in 3 kcal/mol,
A-U pairs in 2 kcal/mol and G-U pairs in 1 kcal/mol. For
sequences belonging to the neutral networks computationally
generated, we define the energy of a node as

Ei = − �3NGC + 2NAU + NGU� , �54�

where NGC and NAU are independent quantities correspond-
ing to the maximum number of pairs G-C or A-U that can be
formed with the current sequence. They correspond to
Min�#G, #C� and Min�#A, #U�. In case of an excess of both
G and U, pairs G-U would be formed. For example, the
sequence s=AAUGCACUCAAGGG has energy Es=
−13 kcal /mol: it can form three pairs G-C, two pairs A-U,
and there is no excess of U to pair with the G in excess. Note
that with this simple definition we do not take into account
geometrical constrains. Actually, the energy of a folded se-
quence defined as in Eq. �54� is a lower bound to the energy
obtained by realistic folding algorithms. An absolute lower
bound to the energy of a sequence of length l is Emin=
−3l /2 when l is an even number and Emin=−3�l−1� /2 when
l is an odd number. With this definition of energy we con-
sider in a natural fashion the relatively smooth variation in
the energy of neighboring sequences �whose composition
varies smoothly by construction� in the network.

We can control as well the correlation between degree and
energy. Networks whose construction started from an initial
node with a sequence made of GC repeats represent the NS+

regime, since this sequence has the minimum possible en-
ergy E�GC�l/2 =Emin=−36 kcal /mol and the initial nodes will
be those of higher degree, as has been shown. On the other
hand, networks that begin with a poly-A sequence �i.e.,
AAAA…� resemble the NS− regime because the energy as-
sociated to this sequence, unable to form any base pair, is the
maximum possible: E�A�l =0 kcal /mol.

B. Population dynamics

In the numerical simulations discussed in this section, we
have constructed two networks following the algorithms RM
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and PM previously described with l=25 and m=200. Table I
summarizes the main topological parameters in either case.
Apparently, both networks have properties reminiscent of
small-world networks �37�, i.e., a low mean geodesic dis-
tance L between all nodes and a high clustering coefficient C
�see Table I caption for details�. However, in our case, the
small-world topology is not caused by the presence of true
shortcuts, but results from the high dimensionality of the
genome space. In addition, note that the minimum path be-
tween two sequences differing in nt nucleotides is at least nt,
thus revealing the underlying regular network. We can di-
rectly appreciate an excess in the number of links caused by
the presence of sequences in the network at a Hamming dis-
tance of one different from the mother sequence: in the limit
l→�, the expected number of links in a network of m nodes
constructed through either algorithm is Ml→��m��m.

The main properties of the evolution on the RM and PM
networks in the NS+ regime, that is, when stability and de-
gree are positively correlated, are very similar to those ob-
tained in the three-node and the four-node networks. For
� /�=0, we have seen that the topology of the network fully
determines the evolution of the population. As � /� grows,
the population is increasingly attracted to the most stable
region from the energetic viewpoint which, in turn, is the
most connected one. This positive feedback leads to a
smooth contraction of the population around the most stable
and connected node. As a consequence, the time to equilib-
rium shows, once more, very low values.

On the contrary, when the population evolves on a net-
work in the NS− regime, i.e., when stability and degree are
negatively correlated, the phenomenology gets richer. Figure
8 shows the main properties of the RM network analyzed in
Table I as a function of � /� in the NS− regime, and Fig. 9
shows the same quantities for the PM network. The equilib-
rium properties E, K, and D are shown in plots �a�, �b�, and
�c�, respectively, while �d� displays for both figures the res-
caled times to equilibrium �t� and �t�

1. All quantities have
been calculated for �=0.001, 0.01, and 0.05, and they all
collapse on the same curve. This agreement suggests that the
dependence of u�1 �and therefore E, K, D�, and �t� on � /�

that we could analytically prove for the three-node and the
four-node networks can be generalized to networks of arbi-
trary size and topology.

When comparing both networks, we see that the transition
from the most connected area to the lowest energy nodes is
relatively smooth in the RM network and very abrupt in the
PM network. In the case of RM networks, where the degree
distribution is more uniform than in the PM case, the possi-
bility of multiple migrations is higher and transitions are thus
more gradual for the same parameters. This fact is reflected
in Fig. 8, where the equilibrium properties E and K appar-
ently show three broad plateaus as � /� grows. Furthermore,
the maxima of the average dispersion D and the time to
equilibrium t�, that typically coincide with the migrations,
show relatively flat peaks. On the contrary, in the PM net-

TABLE I. Summary of the main network parameters: number of
nodes m, number of links M, mean degree �k�, largest degree kmax,
mean geodesic path L between all nodes of the network, diameter
Lmax �longest distance between any pair of nodes�, global clustering
coefficient C �fraction of triangles� and highest eigenvalue 
1 of the
adjacency matrix.

RM Network PM Network

m 200 200

M 218 250

�k� 2.18 2.50

kmax 11 25

L 8.41 5.26

Lmax 20 10

C 0.0767 0.1100
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FIG. 8. Dependence of the properties of the random mutation
�RM� network on � and � when neutrality and energetic stability
are negatively correlated �NS−�. Each curve is plotted for �
=0.001 ���, 0.01 �solid line�, and 0.05 ���. �a� Average energy E.
�b� Average degree K. �c� Average dispersion D. �d� Dependence of
the rescaled time to equilibrium with � /�. The solid line stands for
t� �obtained from Eq. �31��, and the dashed line represents t�

1 �Eq.
�32��.
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work the dynamics of the population is mainly characterized
by the existence of a unique node of degree 25. This hub
strongly attracts the population, until the influence of the
most stable node is so intense that a sudden migration oc-
curs. As a direct consequence, the maxima of the average
dispersion D and the time to equilibrium t� are remarkably
sharper in this case.

The dynamic behavior of the population on the RM and
PM networks is mainly controlled by the largest eigenvalues
of the transition matrix. We know that �1 is a nondegenerate
eigenvalue �see Sec. III� and, though we do not have a math-
ematical proof for other eigenvalues, our numerical studies
indicate that they do neither cross �i.e., �i��i+1∀ i ,� ,�� in
large, heterogeneous networks. However, as � /� changes,
consecutive eigenvalues can get very close one to another
and exchange their associated eigenvectors, causing qualita-
tive changes in the average energy, the time to equilibrium,
and other macroscopic variables. This complex situation
might produce a number of maxima in t�, for instance, that
depends on the precise topology and energy distribution of
each network.

As we have already seen throughout the paper, the time to
equilibrium is also influenced by the initial condition n��0�.
For certain values of � /�, it may happen that 		2

L	� 		1
L	,

causing the time to equilibrium to be especially short �see
Eq. �32�, and Sec. IV B for the analogous phenomenon in the
four-node network�. In Fig. 8�d� this happens for three values
of � /�, signaled with arrows in �1, �2, and �3. The time to
equilibrium t� is plotted as a solid line, while t�

1 �Eq. �32�� is
plotted as a dashed line. This approximation is usually very
good, but as we discussed in Secs. II and III, if the influence
of the higher-order eigenvalues is not negligible, Eq. �32�
does not yield accurate enough results. The only region of
the figure where t� and t�

1 do not coincide �to the resolution of
the plot� is around �2, a region enlarged in Fig. 8�d� for
clarity. In the small region around �2, it happens that 		3

L	
 		2

L	, and �3 is so close to �2 that the approach to equilib-
rium is ruled by the third eigenvalue �3: as a result, the
minimum expected by Eq. �32� in �2 vanishes and does not
appear in an exact computation.

Finally, Figs. 10 and 11 show two examples of the equi-
librium distribution of the population on the RM and the PM
network, respectively, for the NS− regime and representative
values of � /�. In the RM case, the plots correspond to the
three plateaus observed in Fig. 8; in the PM case, the pictures
show one situation below the critical value of � /� and one
above it. As we already mentioned, the lack of very large
hubs in the RM network gives rise to smooth transitions and
allows two different migrations as � /� grows. On the con-
trary, in the PM network the dynamics of the population is
mainly characterized by the existence of a unique but very
strong hub, that allows the existence of only two regimes
when � /� is varied. Consequently, the migration toward the
most stable node, which in fact has degree one, is certainly
abrupt.

VI. CONCLUSIONS

The evolution of a population of replicators on networks
of selectively neutral genotypes depends on the topology of

the network and on the mutation rate �, which determines
the time to equilibrium. When exact neutrality is broken
through the introduction of an energy for the nodes, two
competing selection pressures �toward highly neutral con-
figurations or toward low-energy states� lead to different
equilibrium states. The time to equilibrium becomes then a
complex function of � and the selection parameter �. Our
analyses of small networks have shown that relevant equilib-
rium properties as the average energy of the population, the
average degree, or the average dispersion on the network, are
functions of the rescaled parameter � /�: � pushes the popu-
lation toward the most stable regions of the network, while �
promotes neutrality and generically diminishes the time to
equilibrium.

In the cases studied, we have seen how relevant the cor-
relation between energy and degree is by extending the study
to complex networks in different regimes. Remarkably, the
phenomenological behavior in such networks is qualitatively
identical to what has been observed in simpler networks: for
positive degree-stability correlations �NS+�, where the most
neutral regions are also the most stable ones, the evolution of
the population is smooth as � /� increases. On the other
hand, sudden migrations are observed when neutrality and
stability are negatively correlated �NS−�. This occurs when

(b)(a) (c)

FIG. 10. �Color online� Final distribution of the population in
the NS− regime for the RM network. The area of each node is
proportional to its population. �a� � /�=0.0005. The selection of
low energy is weak and the population stays around the most con-
nected area. �b� � /�=0.0014. The population escapes from the
most connected region and, in its movement toward the most stable
node, it stacks into an area of moderate neutrality and low energy.
�c� � /�=0.0027. Stability overcomes neutrality and the population
is located around the most stable node. See Fig. 8 to obtain the
values of E, K, and D in each situation.

(b)(a)

FIG. 11. �Color online� Same as Fig. 10 for the PM network. �a�
� /�=0.0025. The energy dependence is not enough to overcome
the high neutrality of the most connected nodes. �b� � /�=0.01. The
critical value � /��0.0055 has been crossed and the population has
drifted toward the most stable node �bottom-right node of the fig-
ure�. See Fig. 9 to obtain the values of E, K, and D in each situation.

EVOLUTIONARY DYNAMICS ON NETWORKS OF… PHYSICAL REVIEW E 80, 066112 �2009�

066112-13



the eigenvalues �1 and �2 get very close. In addition, the
influence of the initial condition can be relevant in acceler-
ating the process and, occasionally, eigenvalues of higher
order can induce more complex dynamics in a way that we
have quantified.

Our study has been motivated by current knowledge of
networks of selectively neutral genotypes �notably RNA sec-
ondary structure neutral networks�, and in particular by the
prediction that the degree of neutrality of a population in-
creases through evolution. However, highly neutral geno-
types are rarely observed in nature. We have shown that the
time to achieve the region of high neutrality is larger the
smaller is the mutation rate, and depends in a nontrivial
�case-dependent� manner on the size and topology of the
network. In future studies, it would be interesting to compare
the typical time scale �−1 with the typical time during which
an environment keeps constant to determine to what extent is
high neutrality an observable property of such systems. The
introduction of a second selection pressure uncorrelated to
neutrality might cause major deviations from highly neutral
states, and prevents its achievement in generic situations. At
present, the astronomically large sizes of neutral networks of
RNA sequences forbid systematic studies on such networks.

Previous studies have shown that neutral networks of
RNA secondary structures display a substantial correlation
between the degree of a sequence and the energy of the cor-
responding minimum free-energy folded configuration �38�

�in a way that would be represented by the NS+ regime in
this paper�. In principle, thus, the dynamics of RNA popula-
tions is canalized toward more stable and more neutral states.
In simple models of heteropolymer folding, the assumption
of a positive correlation between neutrality and stability �our
NS+ regime� originates funnels in sequence space that direct
the population toward sequences with high neutrality and
high stability �16�. This, however, does not preclude that, in
cases where other features optimized in different regions of
the genome space happen to be under strong selection �an
example could be specific sequences characterizing active
molecular sites�, also populations of RNA sequences, het-
eropolymers, or proteins, could show sudden migrations to-
ward regions that better fulfill all simultaneous adaptive re-
quirements. The implications of the dynamics we have
characterized in the evolution of populations of replicators
under changing environments �requiring different pheno-
types and thus competence between different neutral net-
works� will be a subject of future research.
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