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Role of Intermittency in Urban Development: A Model of Large-Scale City Formation
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A stochastic model that incorporates the essential mechanisms supposed to govern city formation
is numerically analyzed. The model generates intermittent spatiotemporal structures and predicts
a power-law population distribution whose exponent is in excellent agreement with the universal
exponent observed in real human demography. Preliminary results of cluster analysis of the model
also coincide with actual data. We thus suggest that urban development at large scales could be driven
by intermittency processes. [S0031-9007(97)03578-3]

PACS numbers: 89.50.+r, 05.20.—y, 05.40.+j

Social behavior is one of the most representative in{9]. In population dynamics, fluctuations in birth and death
stances of complexity in natural systems. The interactiomates produce strongly inhomogeneous distributions, char-
between their elements—for example, human beings—acterized by sharp spikes [10]. These population peaks
gives origin to cooperative evolution that strongly differs have their origin in the accumulation of favorable birth
from the individual dynamics. At the macroscopic level, events and, since the main part of the population concen-
this phenomenon manifests itself in a wide variety oftrates there, they dominate the evolution of the system in
forms, such as demographic evolution, cultural and techspite of their rarity. Intermittency has also been detected in
nical development, and economic activity [1]. the matter distribution of the Universe [11], and can have

A striking feature in the macroscopic dynamics of com-a relevant role in the kinetics of autocatalytic chemical
plex systems is the recurrent appearence of universakactions [12].
laws—quantified, typically, by characteristic exponents in In qualitative terms, the demographic distribution of hu-
scale-invariant distributions—that happen to be essentiallynan beings on the Earth’s surface strongly resembles inter-
independent of the details in the microscopic dynamics [2]mittency patterns. Sharp peaks of concentrated population
In physics, critical phenomena such as phase transitionsith a broad distribution of sizes—the cities—alternate
provide a paradigmatic example of this universality. Sevwith relatively large extensions where the population den-
eral mechanisms have been proposed to explain in versity is much lower. It has been shown that around huge
general terms the occurrence of universality in complexurban centers, such as Berlin or London, the distribution
behavior. Self-organization models [3,4], for instance, emof areas covered by satellite cities, towns, and villages fol-
phasize the role of nonlinear individual interactions in thelows a well-defined universal law [13]. The frequency of
formation of macroscopic spatiotemporal structures. Thishese relatively small population units as a function of their
class of models has successfully explained the characteriareaA decays asi™ " with » = 2. This behavior, which
tic exponents of distributions occurring in very complexis related to the occurrence of fractal structures in urban
processes such as, for example, species macroevolutipatterns [14], has been (partially) reproduced by means of
[5]. Stochastic fluctuations have also been pointed out asorrelated diffusion-limited aggregation models [13,15].
an important ingredient in the origin of universal laws [6]. Most notably, the universal law for the size distribu-

The main aim of this Letter is to show that intermit- tion of cities holds at much larger scales. This remarkable
tency mechanisms [7] could play a relevant role in thefeature—which was formulated in semiquantitative terms
universal properties of the (human) social phenomenon dfy Zipf [16], some fifty years ago—has been recursively
city formation and global demographic development. Wepointed out in subsequent research on demographic devel-
present a linear model whose dynamics is driven by a stepment [17]. Figure 1 shows a log-log plot of the fre-
chastic process, and show that it reproduces global statisfuency (in arbitrary units) as a function of the population
tical features of actual urban systems. n for the 2700 cities of the world withn > 10° inhabi-

Spatiotemporal intermittency underlies the evolution oftants [18], the2400 cities of the United States of America
a wide class of real systems, ranging from population dy{U.S.A.) withn > 10* inhabitants [19], and th&300 mu-
namics to turbulent fluids. In these systems, the relevanticipalities of Switzerland witl > 10° inhabitants [20].
fields are different from zero in very localized regions of It is clear that the frequencf(n) shows a definite power-
space and time. The whole evolution is therefore drivedaw dependencef(n) ~ n~". From least-squares fitting
by the behavior of these small spots. In fully developedof these data sets, we find= 2.03 * 0.05 for the world
turbulence, for instance, the vorticity field and the rate of(in the range of: < 107), » = 2.1 + 0.1 for the U.S.A.,,
energy dissipation are concentrated along the vortex linesnd »r = 2.0 = 0.1 for Switzerland. The exponent is
[8]. In plasmas, these lines trap also the magnetic fieldherefore extremely uniform; = 2, and the power-law
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10° : : : : the population preserves—in a sufficiently large system—
its mean value, but higher population momenis(s) =
> n(x,0)f (k > 1), diverge as time elapses. This diver-
gence, which mathematically characterizes intermittency
[21], is associated with the formation of strong inhomo-
geneities in the population. In fact, for smajl (¢ <
1 — p), sharp spikes of increasing height appear where
favorable events accumulate, whereas in the remaining
sites—whose number grows in time—the population de-
creases rapidly. The dynamics is therefore dominated by
fluctuations.
:gvsvﬁzeﬂan . In connection with the formation of cities, Eq. (1) rep-
167 , ‘ . ‘ resents the progressive accumulation of population in the
10’ 10* 10° 10° 10’ 10° incipient urban centers. Indeed, since the average popu-
population lation is preserved, this mechanism can be interpreted as
FIG. 1. Population distribution for th€700 largest cities populati.o.n transport from rural areas to a randomly Chos.?”
of the world, the2400 largest cities of the United States S€t Of cities. As a consequence, each one of these cities
of America (U.S.A.), and thel300 largest municipalities of grows—most plausibly—at a rate proportional to its size.
Switzerland. For the sake of clarity, the data sets have been To complete the formulation of our model, the reac-
mutually shifted in the vertical direction. The straight lines tjon process described by Eq. (1) is added with diffusion
have slope-2. to nearest neighbors [22], which represents the natural
spreading of population inside cities avoiding excessive
dependence extends over several decades, in spite of thal densities. Time-discrete diffusion is here character-
fact that the three data sets correspond to very different dézed by a parameter, which gives the fraction of popu-
mographic, social, and economical conditions. In fact, theation that abandons a given site at each step:
data for the world is expected to mainly reflect the situa- _ /
tion of developing cour?tries, the U.S.X. is an economi- nCer 1) = (1= ajnlx, 1), 2)
cally developed but young nation, whereas Switzerland ighe diffusing fractionan(x, ') is uniformly distributed
an old country with a relatively very stable population. Into the neighbors. For the Zeldovich model in continuous
the following, we show that the power-law dependence irfpace and time, it has been shown that diffusion is unable
the frequency of city populations can be explained in term#0 inhibit intermittency in low-dimensional systems [12].
of a very simple model based on the combination of sto\We expect that the same result holds in our model,
chastic reactionlike events and a diffusion process, whiclrespectively of the values of, ¢, anda.
leads to the development of intermittency patterns. We In summary, at each time step all the sites are first
are able to analytically explain the power-law exponent—submitted to the reactionlike process and then diffusion

which is independent of the model parameters—and nutakes place. These two substeps are successively applied

frequency (arb. units)

® World

merically investigate other relevant distributions. along the whole evolution. Figure 2 shows the population
Consider a system evolving on a lattice at discrete time
steps. The population in siteat time¢, n(x, 1) is a real 10°

positive number. The system starts from a homogeneous

distribution, for instancey(x,0) = 1 for all x. The evo- \\\\ *p=05,¢4=0,0=025
i \\A\

lution consists of two time substeps. In the first one, the *p=075,¢=0,0=01 |
population at each site suffers a reactionlike stochastic +p=05,¢=0.02,0=025
process characterized by a probabijitf0 < p < 1) and
an additional parameter (0 < g = 1):

(. t') = {(1 —q)p 'n(x,t), with probability p ,
X, g(1 — p)~'n(x,t), with probability1 — p,

(1)

wherer <’ <t + 1. Because of the symmetry of the > ‘
two possible outputs forn(x,t), the value ofg can be 10 10' R U 10
restricted, for each value gf, to the intervall0, 1/2]. population

This linear random process is a generalization of the ZeIFIG. 2. Population distribution from numerical realizations

dovich model for intermittency, which takgs= 1/2 and  of the present model on 200 X 200 site lattice, for three
g = 0[10]. Under the action of these reactionlike events,parameter sets. The straight lines have slefie

frequency (arb. units)
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frequency over the lattice sites averaged over time afteacterization of the size distribution of cities. Indeed, urban
a transient ofl0? steps had elapsed, for three parametecenters should be identified, in our model, with clusters of
sets. These numerical realizations were performed on eonnected sites whose population is above a certain thresh-
200 X 200 site square lattice. The power-law dependenceld. This leads us to apply techniques of cluster analysis
of the frequencyf(n) is extremely well defined, and to the model, whose details and results will be presented
the corresponding exponent is, for the three sets;  in a forthcoming article [23]. In particular, the dynamics
2.01 = 0.01, in complete agreement with the exponentof formation and subsequent evolution of clusters is ex-
of the data of Fig. 1. According to our simulations, this pected to depend on the reaction and diffusion parameters,
result is independent not only on the paramejerg, and  although scaling properties can be still universal. Here,
a but also on the lattice size, for moderately large sizesve present only some preliminary results on the distribu-
(greater thars0 X 50). tion of areas and total populations of clusters. The area of
An exponentr = 2 in the population frequency(n)  a cluster is defined as the number of sites that it contains,
can be readily explained if we accept two main assumpand its population is the sum ofx, r) over those sites. As
tions. In the first place, as numerical realizations showthe system evolves, clusters vary in form and size—they
f(n) is a stationary distribution after a certain transientcan even aggregate, split, and spontaneously appear or dis-
(whose length can depend ¢gn ¢, and «) has elapsed. appear—but the distributions of areas and populations are,
The second assumption, suggested by the above quoteadtemporal averages, well defined. The results presented
result on the Zeldovich model [12], is that diffusion is prac-here correspond to numerical realizations @@ X 200
tically irrelevant in the evolution of (n). Infact, since dif- site square lattice, averaged over time after transients have
fusion would not be able to compete with intermittency,elapsed, withp = 0.5, ¢ = 0, anda = 0.25. As shown
its effect should be qualitatively the same for any valuein Fig. 3, the frequency distributions of area and total
of «, in particular, the same as far — 0 (but« # 0).  population of clusters exhibit a power-law decay with an
The evolution off (n) can thus be thought of as follows, in exponent which is again close te2. For the area dis-
terms of what happens for small In the reaction substep, tribution, this exponent is in complete agreement with real
each value of: changes ta’ = (1 — ¢)n/p with proba- data for large urban centers [13]. Note also that our results

bility p or to n’ = gn/(1 — p) with probability 1 —  predict a linear correlation between area and total popula-

p. Therefore, the resulting frequency/(n’) has two tion inside clusters.

contributions: The coincidence between the universal exponent ob-
served in real data of human population distributions and

f'(n")dn' = pf(1 f . n’)d(l f p n') the exponent obtained from a model that incorporates only

the essentials of plausible mechanisms in urban devel-

. )f(l —p n’)d(l - P n,) 3) opment is indeed remarkable. This coincidence seems

P q q ' to indicate that only a few, very elementary ingredients

The main effect of diffusion consists, in the second sub@'® really relevant in the dynamics of such a complex
step, of a population redistribution from the sites with

higher values of:’ to low-populated sites, whereasre- 10°
mains practically unchanged in sites with moderate popu- ©
lation. In f(n), therefore, diffusion implies a depletion in 100 | °oo e area

the zone of high population and a consequent growth in the g ° o population
zone of small populations. In the intermediate regjtin,) E
remains unchanged and we conclude that its evolution is &
essentially driven by reactions. Now, since the population & 10"
frequency is supposed to be in a stationary state, we should 2
have, in Eq. (3)f' = f, which immediately implies § 1o
fn) = n”2 @ g

. . . o

for intermediate values oi. In fact, if /' = f, f(n) = 107t J

An~? is anexactsolution to Eq. (3) for any value of.
Our result is also completely independent of the values of 107 s S
L ; . 10 10 10 10
P4, ande, although the limits of the region where it holds area, population
will in general depend on those parameters.
This analytical result, which fully explains the exponentFIG. 3. Total-population and area distributions inside clusters

; ietrih o i i~o[0f connected nonempty sites. These numerical results corre-
observed for the population distribution in the numerlcalSporlol o 2200 X 200 site lattice, withp — 0.5, ¢ — 0, and

realizations of the p_resent model (Fig. 2), is also in €X-y = 0.25. For the sake of clarity, the data sets have been mu-
cellent agreement with real data (Fig. 1). The frequencyually shifted in the vertical direction. The straight lines have
f(n) should however be considered as a rather rough chastope —2.
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