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SUMMARY

The dynamics of extinction and diversification of life is not a simple random process, driven by arbitrary
inputs. Biotic interactions are known to play a very important role in the population response to physical
factors. In spite of this fact, it is not clear how the ecological scale is related with the macroevolutionary
one. In this paper we suggest that both levels are, at least to some extent, decoupled. Using a simple model
of large-scale evolution, we show how an z-species ecosystem evolves towards a critical state where
extinctions of all sizes are generated. This state involves a situation where high unpredictability is present.
The basic properties of the overall macroevolutionary pattern are well reproduced and a new

interpretation for this process is suggested.

1. INTRODUCTION

Populations change in time, often in rather complex
ways (May 1974; Bascompte & Solé 1995). Sometimes,
they go extinct. Extinctions can be associated with
external factors as changes in sea level or the fall of an
asteroid. However, biotic interactions play at least an
equally important role: epidemics or the introduction
or disappearance of a single species can trigger changes
in population densities in other species. Eventually, the
players in a community can be associated in an
unlikely chain of events. Interactions can be extremely
complex and involve apparently unrelated species. A
very interesting example is the effect of the introduction
of a mammalian virus to Southern England on the
large blue butterfly (Maculina arion) (Ratcliffe 1979).
The chain involved rabbits, certain type of grasses, a
species of ants and the caterpillars of the blue butterfly.

Population fluctuations are a classical problem in
the theoretical ecology. The standard mathematical
approach is the Lotka—Volterra (LV) n-species model,

dn, z

dti=N@(€¢"Z'yi}Nj<t>>s (1)
j=1

where (N,), i=1,...,n are the populations of each

species. These models have been explored in deep. Two
main qualitative problems have been considered: (i)
small-n problems, involving two or three species; and
(i) large-n models, involving a full network of
interacting species. In the last case, the problem of
stability versus complexity (May 1974) remains still
open. The so-called community matrix I" = (y,;) is the
basic subject of all these studies.

Many interesting theoretical results have been
obtained when certain assumptions over I” hold (May
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1974; Svirezhev & Logofet 1983). The following, and
already classical result was obtained by May in
randomly connected food webs (May 1972). Let C be
the fraction of non-zero elements in 1" and let o® be the
variance of the set (,;). It was shown that the system
will be stable if o4/2C <1 and unstable otherwise.
This transition is sharply defined for large . This result,
though may not be directly applicable to real ecosys-
tems (Pimm 1991 ; see however Kenny & Loehle 1991)
shows us that thresholds to complexity and stability
can exist in generic ecosystem models.

Nevertheless, the stability of a given ecosystem is not
a rigid property. Long-term changes are always
threatening stability and the community structure and
species competition change over time. Extinction can
occur and many examples are available (Keitt &
Market 1996; for a review, see Pimm 1991, and
references therein). These extinctions only involve one
or a few species, but on a larger timescale larger events
can occur. In fact, the study of the available evidence
from the fossil record (Benton 19954) shows events of
all sizes, from small to mass extinctions (Jablonski
1987).

As an example, in figure 1 we show the time
fluctuations in the extinction rate (for genera) of
marine animals. We see a wide range of fluctuations
and the computation of the power spectrum P(f), also
shown, gives us a continuous, power-law decay P(f’) oc
f‘/i with # = 0.83+0.02. This result is consistent with
a recent hypothesis which tries to explain the ubiquity
of scale-free laws in nature: the theory of self-organized
critical phenomena (Bak et al. 1987; Bak & Sneppen
1993). Self-organized criticality (soc) is present in a
wide set of systems far from equilibrium, from sandpiles
and earthquakes to astrophysics and it has been

© 1996 The Royal Society



1408 R. V. Solé and others Extinctions and chaos

14
ﬂ 80
] 8 (@)
] 60
B =}
L40
- -
[9]
g
pe)
M
=]
g
g o1
Q
[
&
)
S
o
o
0.01

T T T T T

1 10 100

frequency

T T

Figure 1. (a) Proportional rate of extinction as a function of
the geologic time (here each time unit = 2 Ma) for genera of
marine animals during the Phanerozoic (adapted from Allen
& Briggs 1989); (b) Power spectrum P(f") obtained from the
previous time series. [t gives a scaling relation P(f) oc /7
with = 0.83+0.02. Such a result is consistent with a scale-
free phenomenon (see text).
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Figure 2. Decay of families of Trilobita from the early
Ordovician to the late Permian, when they went extinct. We
can see a wide set of changes from small extinctions to very
large, as the one occurred at the end of the Ordovician period.

suggested to be present in biological evolution
(Sneppen et al. 1995; Solé & Bascompte 1996). Such
systems tend to organize themselves, after a transient
period, in a state with no characteristic time- or length
scale other than the system size. Small, basically
random changes (the fall of a sand grain or the
appearance of a new species) can be enough to trigger
large events. In figure 2 a different picture of the
discontinuous nature of extinction events is shown.

Proc. R. Soc. Lond. B (1996)

Here the total number of Trilobita families is shown
from the early Ordovician to the late Permian. The
number of families falls several times, but the height of
this steps shows a very wide range of values.

David Raup (Raup 1993) used this example to ask
the key question: did the trilobites do something
wrong? Were they genetically inferior? Or had they
simply bad luck? Ideally, the answer to this question,
which involves the large scale, should be the result of
the rules working at the shorter scale. In such a case,
we could find a generalization of the previous
equations, perhaps involving noise, and the observed
extinction pattern would be obtained. But can such
large-scale events be included in a generalized version
of Lotka—Volterra equations? An affirmative answer to
this question implies that macroevolution is correctly
described from the lower-scale population dynamics
and a reductionist approach would be justified. In
some sense, large-scale evolution (and extinction) could
be reduced to the microscale (Maynard Smith 1989).
This view, however, is not shared by all evolutionary
biologists (Eldredge 1985).

An important contribution to this problem came
from theoretical ecology and is known as the Red
Queen Hypothesis (van Valen 1973; Stenseth &
Maynard Smith 1984 ; Benton 1995 4). This hypothesis
maintains that the different species within a com-
munity keep constant ecological relationships to each
other, and that these interactions are themselves
evolving. This theory predicts a constant extinction
rate of species (or other taxa) in agreement with
available data. This picture of evolution implies that
bursts of extinction and speciation will happen only in
response to changes in the physical environment.

A key ingredient of macroevolution is, in our view,
absent in the LV approximation: the essentially
discrete nature of extinction and diversification and the
contingent nature of both processes. Once a species is
gone, diversification of the surviving species will occur.
This process will generate new arrangements in the
community structure, which might lead to new
extinctions.

In this paper we want to analyse this problem by
means of a simple model of macroevolution. The basic
ingredients (extinction, diversification and networks
dynamics) will be included. In particular, we want to
stress the existence of higher-level mechanisms explain-
ing some of the patterns observed in the fossil record.
As we will see, a new interpretation for the extinction
pattern is obtained.

2. EVOLUTION MODEL

Previous models of evolution leading to critical states
have been based in the so called Bak—Sneppen (Bs),
(Bak & Sneppen 1993) or the Kauffman—Johnsen
model (Kauffman & Johnsen 1991). These are
oversimplified pictures of evolving ecosystems leading
to power laws. However, none of them involve real
extinctions nor diversification, although some alter-
natives to these models have been explored. See for
instance the niche invasion model of Kauffman
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Figure 3. An example of the rules used in the evolution
model. Here an N =6 network is shown, with a given
connectivity (a). In (b), two extinct species are shown as
empty circles. At (¢), the last rule (diversification) is applied.
The empty sites are occupied by the species marked by an
arrow.

(Kauffman 1995) or the modified Bs model introduced
by Newman & Roberts (Roberts & Newman 1996).
Recently (Solé 1996; Solé & Manrubia 1996) such
ingredients have been explicitly taken into account in
a new model of species interaction. Here we follow this
last approximation.

The Lotka—Volterra equations (1) are too difficult to
manage if I is formed by time-dependent terms. We
want to retain the basic qualitative approach, but our
interest is shifted from population sizes to the ap-
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pearance and extinction of species. Here species are
assumed to be a binary variable: §; = 0 (extinct) or
$; = 1 (alive). The state of such species evolves in time

(new assumed discrete) according to

n
Si(t+1) = ‘P(Z Yi(t) S,-(l)), (2)
J=1

with ¢=1,...,N. Here @(z) =1 if 2> 0 and zero
otherwise. Equation (2) can be understood as the
discrete counterpart of (1), but involving a much
larger timescale. In our model (Solé 1996; Solé &
Manrubia 1996), the ¢th species is in fact represented
by the set of connections (y,;, ), Vj. The elements y,;
are the inputs and define the state of the species. The
symmetric elements y,; are the outputs and represent
the influence of this species over the remaining ones in
the system.

The dynamics is defined in three steps.

1. Changes in connectivity. Each time step we
change one connection y,;, which takes a new, random
value y,;(t+1)e(—1,1), foreach i = 1,..., N, with je
(1,...,N) chosen at random. This rule is linked with
the internal changes that account for species inter-
actions. They could be associated with external causes
or simply be the result of small changes as a
consequence of coevolution. This rule introduces
random, small changes into the network.

2. Extinction. The local inputs & = 2;y,(t) S;(¢)
are computed, and all species are synchronously
updated following (2). If the kth species goes extinct,
then all the connections that define it are set to zero,
that is y,, =y, =0,V). This updating introduces
extinction and selection of species. Those sets of
connections which make a species stable will remain.
But in removing a given species, some positive
connections, with a stabilizing effect on other species
can also disappear, and the system can become more
unstable.

3. Replacement. Some species are now extinct (i.e.
S, =0) and empty sites are then available for
colonization. Diversification then is introduced. A
living species is picked up at random and ‘copied’ in
the vacant spaces. The new species are basically
identical to the one randomly chosen, except for a
small random change in all their connections. Specifi-
cally, let S, the copied species. For each extinct S
(vacant spaces), the old connections are set to zero, and
the new connections vy, and v, are given by y,; =
Ve + My and v, = ¥, + 9., Vj. Here 77 is a small random
variation (we take = 0.05). In this way, the new
species are the result of the diversification of one of the
SUrvivors.

The previous rules can be summarized in figure 3,
where a small ecosystem is shown. In our previous
study, it was shown that the system evolves to a critical
state with power laws in the extinction sizes (i.e. N(s)
oc 57, with 7 & 2) and waiting times until extinction.
The model shows punctuated equilibrium, as found in
the real fossil record (Gould & Eldredge 1993). But
here there is no separation between ‘mass’ and
‘background’ extinctions. All of them are generated by
the same dynamical process, and no particular ex-
tinction size is privileged.
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3. CRITICALITY AND UNPREDICTABILITY

In this section we want to analyse in which way the
critical state is reached and the interpretation of the
resulting dynamical pattern. The random changes in
the network connections make the trophic links
between species more and more complex. We can
quantify their complexity by means of an adequate
statistical measure. Let us first consider the time
evolution of connections. Let P(y*) and P(y") =
1 —P(y*) be the probability of positive and negative
connections, respectively. The time evolution of
P(y*,1) is defined by the master equation

PO by Pl 9" =Pl 0 Pl 7).

(3)
From the definition of the model, we have a transition
rate per unit time given by P(y"—y7) = P(y" —»>y") =
1/(2N) and so we have an exponential relaxation
Piy*,t)=(1+(2F—1)exp(—t/N))/2, where F, =
P(y*,0). This result leads immediately to an expo-
nential decay in the local inputs, () oc exp (—¢/N).
As a result, the system evolves towards a critical state
where the inputs introduced by the coevolving partners
are small and so small changes involving single
connections can generate extinctions.
We can use the entropy of connections per species,
i.e. the Boltzmann entropy

H(P(y", 1)) = =P(y", 1) log (P(y", 1))
—(I=P(y",0))log (1=P(y", 1)), (4)
as a quantitative characterization of our dynamics.
The Boltzmann entropy (also known as the Shannon
entropy) gives us a measure of disorder but also a
measure of uncertainty (Ash 1965). It is bounded by
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Figure 4. Extinction pattern in the model. Here N = 100
species are used, and a small time series is shown, together
with the entropy. We see that large extinctions takes place
close to higher entropies (see text).

the following limits: 0 < H(P(J™,t)) < log (2). These
limits correspond to a completely uniform distribution
of connections (i.e. P(y*,t)=1 and P(y~,t) =0)
with zero entropy and to a random distribution with
P(y*,t) =1/2 which has the maximum entropy.
Our rules make possible the evolution to the maximum
network complexity, here characterized by the upper
limit of the entropy.

As we can see in figure 4, H(P(y*,¢)) grows, after a
large extinction event, towards its maximum value
H* =log (2), with sudden drops near large extinctions.
So our system slowly evolves towards an ‘attractor’
characterized by a randomly connected network. At
such state, small changes of strength 1/N can modify
the sign of % and extinction may take place. At this
point, one clearly sees what is the role that external
perturbations play: for them to trigger a large
extinction, it is necessary that they act on a system
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(see text). After a large extinction (¢ =0 in the figure)

diversification occurs (a). As can be seen, the ordered pattern is replaced by a more random one. A detail of the

fluctuations is shown in (b).
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Figure 6. Extinction pattern of species over time. The decay of a given initial set of species (here N = 100) in four
different situations is shown (see text). Both continuous and episodic decay are observed.

located close to the critical state (here, the network
close to the maximum entropy). A large extinction will
never be found in a system with a low entropy of
connections even with a reasonably large external
perturbation. This is a key property of soc systems.
More specifically, a soc system has an order parameter
that defines the transition displayed by the system (in
our case the change from no-extinctions to extinctions)
as a second order (or continuous) phase transition.
This order parameter has been shown to be the
extinction rate, while the control parameter is the
average value of the connections <y;» (Solé &
Manrubia 1996). For {y,»> > 0 no extinction will be
found for a large enough system, while for {y,> <0
extinctions of all sizes (up to system size) can be found.

We can see that a wide distribution of extinctions is
obtained: it is a power-law distribution, N(s) ocs™"
with 7 = 2.0540.06, consistent with the information
available from the fossil record (Raup 1986, 1993 ; Solé
& Bascompte 1996). This result also agrees with the
Newman—Roberts model, who also obtained the same
exponent within the error (Newman & Roberts 1995;

Proc. R. Soc. Lond. B (1996)

Roberts & Newman 1996 ; Newman 1996), while other
models give values clearly different: 7 & 1.1 for the Bs
model and 7 = 1 for Kauffman—Johnsen’s.

Other properties can be explored. In particular, we
could ask which type of diversification patterns are
present. A direct consequence of criticality, as defined
by the previous rules, is the existence of a power law in
the taxonomy. If we look at a tiven species, it can
generate, after an extinction event, one, two or many
new species and the statistical distribution will be a
power law with the same exponent than before (recall
that rule 3, replacement of extinct species, copies all
extinct species in a single alive one). It is interesting to
see that available evidence from the fossil record shows
precisely this range of values (Burlando 1990, 1993). In
our case, every time that replacement takes place, we
define the new elements to be a subtaxa of the parent
species chosen to be copied.

As an example, we have considered the values of the
local fields at each time step. Provided that the
connections take values between —1 and +1, the
internal fields can theoretically range from —N to
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+ N, though large negative values will be seldom
observed. We divide this interval in N pieces and at
each time step we look at all the species in the system
and find all the intervals that are occupied at least by
one of them. The time evolution of this is shown in
figure 5 just after a mass extinction (where we chose
¢t =0). Black dots mean occupied sites. As we can see
the previous rules generate a very complex pattern of
diversification followed by extinctions. Random and
ordered domains are observed.

4. THE RED QUEEN REVISITED

Finally, let us consider the law of constant mean
extinction rate, van Valen’s law (van Valen 1973). As
mentioned in §1, this law maintains that the prob-
ability of extinction within any group remains es-
sentially constant through time. This is a consequence
of the Red Queen theory and an observational result.
This is, however, an average: on average, extinction
rates are constant but a close inspection of the decay
curves shows both continuous and episodic decays
(Raup 1986). The sudden, episodic drops are often
associated with mass extinctions and are usually
assumed to be the result of external perturbations.

The Red Queen model gives a striking, counter-
intuitive explanation of the constant rate of extinction.
If organisms are continuously evolving and adapting,
why do they not get any better, on average, to avoid
extinction?

The episodic (and apparently external) nature of the
species decay is easily explained by our model. Though
long periods of stasis and low extinction rates give a
constant decay, it is the intrinsic dynamics that
generates the episodes of extinction involving several
(some times many) species. These survivorship curves
are shown in figure 6 where four runs of our model are
displayed. Each graphic is generated by starting at a
given (arbitrary) time step in the simulation and
following all the species present at this time step. The
exponential decay in the number of survivors is closely
related to the monotonous drift that the system
experiences towards the extinction threshold, because
of the constant change of connections to random
values. As we can see (and this is rather typical) both
constant and episodic decays are observed. We do not
need to seek for a special external explanation for the
episodic decay. Obviously, an external cause might
trigger a large extinction event by altering the network
dynamics at the critical state.

In our approach, the theoretical problems derived
from the Red Queen interpretation simply do not arise.
Extinctions are an unavoidable outcome of network
dynamics. Though some selection of connections is
present after each extinction event, unpredictability
always increases. As with the example of the large blue
butterfly, a given species cannot predict how the other
players will modify their intrinsic properties and in
particular how the network will be rearranged after a
new extinction. This situation is basically shared by all
the players, and so all of them are, on average, equally
prone to disappear in the long run.

Proc. R. Soc. Lond. B (1996)

5. DISCUSSION

In this paper we have analysed the consequences of
a simple self-organized model of large-scale evolution
involving extinction and diversification. The model is
inspired in the standard Lotka—Volterra approach but
we move from the ecological timescale (where popu-
lation changes are relevant) to the paleontological one
(where changes in species composition occur). In the
small scale, deterministic factors are usually dominant,
though some types of unpredictable behaviour are
present, for instance when deterministic chaos is
involved. In the large scale, however, continuous,
random changes in the trophic links move the system
towards a critical state characterized by a high
unpredictability and sensitivity to small perturbations.
Here is worth emphasizing that spatial degrees of
freedom can play a very important role. Actually, it is
well known that space can stabilize species interactions
which, otherwise would not persist (Hassell et al.
1991; Solé et al. 1992; Bascompte & Solé 1995). This
situation allows a given ecosystem to explore a wide
range of interactions and, in the long run, eventually
triggered by external causes, extinction can occur. In
fact, some authors claim that these external causes
might be the generating mechanism of the observed
power-law in real extinction events, and from this
other point of view, a self-organizing system would not
be necessary to account for the observed self-similar
distributions (Newman 1996).

Because of the intricate network of couplings
obtained at the critical state, the problem of which
species will be gone is essentially unpredictable.
Contingency has been recently aduced as one of the
more relevant properties of the evolutionary process
(Gould 1989) and in this paper we give a dynamical
origin to this unpredictability. But in spite of the
intrinsic contingency of this process, the critical state is
characterized by some well defined properties: punc-
tuated equilibrium and power laws. The first (quali-
tative) property is observed both in the model and in
real data. Punctuated equilibrium is in fact a charac-
teristic feature of the fossil record but it is also a typical,
perhaps generic characteristic of complex systems
poised at critical points (Solé et al. 1996). Power laws
are the statistical counterpart of punctuated equi-
librium. The fossil record shows several evidences of
scale-free distributions (Raup 1993; Solé & Bascompte
1996; Solé et al. 1996). Such data sets have not been
interpreted (nor reproduced) by means of classical
models of population dynamics. The global pattern is
emergent, resulting from the generation of complex
correlations among species. This is in total agreement
with the conclusions of other authors, as Gould points
out: ‘paleontologists should conciously explore the
ways in which uncritical extrapolationism limit and
channel thought. Evolution works on a hierarchy of
levels, and some causes at higher levels are emergent’.

To sum up, we have shown that our model of large-
scale evolution is able to recover the observed
evolutionary patterns. The main consequence of our
study is that the network complexity of a given
ecosystem always grows in time leading to essentially



random nets of connections. Trophic links become very
intricate in such a way that the sensitivity of the system
to further changes (both biotic and physical) becomes
maximum. In this sense, the Red Queen picture, where
changes are made to adapt the system to the biotic
environment, should be replaced by an always change-
ing system where species are gone as a consequence of
the unpredictable web of biotic relations. The observed
fractal properties of the fossil record would be a direct
result of this unpredictability in the critical state.
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