Self-organized criticality in ecology and evolution

In a recent TREEd perspective, Solé et al. argued that (1) multispecies communities display self-similar spatiotemporal patterns, and (2) such patterns are indicative of self-organized criticality (SOC). Although we acknowledge the possible existence of SOC in ecological systems, we feel that the authors failed fully to address problems associated with these two points that potentially undermine their thesis.

On the first point, the apparent power-law patterns might be better described with other functions, in particular an exponential function. Exponential functions can closely approximate a power-law when only a portion of the total distribution is observed. Given that data obtained from natural communities often represent only a small subset of the whole community, it is quite possible that we are looking at part of an exponential curve when we think we find a power-law. Pustorino's influential work on the lognormal distribution of species abundance would be relevant here. He suggested that when sample size is limited, the abundance of rare species can fall below a critical minimum, which he called the 'veil line'. When rare species are veiled, the distribution of species abundance can appear very similar to a power-law on a log-log plot.

On the second point, it might not always be appropriate to attribute power-law patterns to an SOC process in the system in question. Solé et al. briefly acknowledged this problem, but did not address it in depth. SOC is, by definition, a spontaneous emergence of dynamics that arise solely through interactions inherent in the system. It might be difficult in practice, however, to distinguish between patterns that arise from such internal processes and those that arise from the imposition of external forces, especially when external forces are themselves power-law distributed. For example, power-law distributed gaps of tropical rainforests have been attributed to an SOC process in the forest ecosystem. However, if air turbulence assumed a power-law distribution as well, what role do the wind dynamics play in creating the gap pattern? SOC might indeed be operating here, but it is being attributed to the wrong system. In the case of the mass extinction in the fossil record, Newman showed that external stresses in a model were sufficient to produce power-law patterns without recourse to an SOC process. Similarly, in the case of the extinction of the introduced Hawaiian avifauna, ecological causes, not species interactions, might be responsible for the apparent power-law exhibited.

SOC has the potential to be a powerful model for natural phenomena across many disciplines. We feel, however, that in future research these problems will require rigorous attention before the SOC model can gain general acceptance among ecologists and evolutionary biologists.

Acknowledgements

We thank Sergey Gavrilets and other members of the Complexity in Biological Systems seminar group at UT for stimulating discussions.

Tadashi Fukami
Craig R. Zimmermann
Gareth J. Russell
James A. Drake

Dept of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
(fukami@utk.edu; czimmer@utk.edu;
grussell@utk.edu; jdrake@utk.edu)

References

Reply from R.V. Solé

S.C. Manrubia, M.J. Benton, S. Kauffman and P. Bak

Power-law distributed quantities have been observed in many different communities. Despite the unavoidable presence of noise in real data, it is often found that a statistical study of the distribution of relevant quantities returns functions spanning up to three decades. When the distribution of gap sizes in a rainforest, the life span of marine genera, or the distribution of tree species is fitted by an unparametric function, the presence of an exponentially or a power-law distributed quantity can be unambiguously determined: the previous examples and many others return power-laws. The use of fitting functions with more than one parameter, like a lognormal curve (which can also be linked with an SOC self-organizing criticality state) might only improve the agreement between the data and the modeling process, but still do not offer any insight into the nontrivial mechanisms producing power-law tails.

Current studies on the organization of biological systems recognize the presence of complex networks of interactions acting at different levels and of strong self-reinforcing processes among the hierarchy. This gives rise to invariant properties and to processes acting at different scales. An ecosystem is formed by many interacting parts, the relevant quantities characterizing it are rarely (if ever) independent and, as a result, the response of the system to an external perturbation will be typically nonlinear, in many cases unpredictable, and very often strongly dependent on its internal state. As an example, models of plankton ecosystems indicate that the outcome of interactions among species in a turbulent ocean (thus showing a power-law spectrum for perturbations) does not lead to simple generalizations. If the nonlinear response of a self-organized ecosystem (usually quantified through several dependent variables) distributes according to a power-law, the internal mechanism positing the system to the observed state is termed self-organized criticality (SOC). And, by definition, SOC requires the concomitant action of an external (slow) driving mechanism that maintains the system out of equilibrium: there is no evolution in its absence.

Keitt and Marquet acknowledged in their work on Hawaiian avifauna the presence of autocorrelated causes that, they argued, could not on its own explain the observed patterns. This is also the case of some stochastic mechanisms that return power-laws when acting on independent units, but only when interactions among elements are considered does one obtain an exponent compatible with the observations. Newman sustains that external perturbations alone might account for the power-law distribution of extinction events in evolution. Nevertheless, the rightness of his analysis has been questioned (P. Grassberger and H. Flyvbjerg, pers. commun.) and, if right, it does not explain the whole spectrum of power-law quantities observed for that system. For instance, the lifetime distribution or the correlations in time are not recovered with his simple stochastic model.

Ricard V. Solé

Complex Systems Research Group, Dept of Physics, FEN, Universitat Politècnica de Catalunya, Campus Nord, Modul B4, 08034 Barcelona, Spain
(ricard@complex.upc.es)

Susanna C. Manrubia

Fritz-Haber Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
(susanna@fritz-haber-institut.mpg.de)

Michael J. Benton

Dept of Geology, University of Bristol, Bristol, UK BS8 1RJ
(mike.benton@bristol.ac.uk)

Stuart Kauffman

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
(stu@santeafe.org)

*Ricard Solé is also at the Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
How should cuckoo chicks signal in different host nests?

We welcome Soler and Soler’s comments on our paper in this issue of TREE, and agree that only by understanding both links in the chain: chick need-begging signals–host provisioning 2 can we fully understand cuckoo chick (Cuculus canorus) begging displays. Our Nature paper dealt exclusively with the first link, whereas a forthcoming companion paper focuses on the second link.

In asserting ‘the cuckoo chick needs the same provisioning rate as an entire brood of reed warblers’ (Acrocephalus scirpaceus), Soler and Soler imply that what the cuckoo chick gets is what it wants. But the two are not necessarily the same.

Turning to the behaviour of cuckoo chicks in other host nests, we agree that it would be fascinating to compare their begging displays. However, predictions cannot easily be made simply from our work on reed warbler hosts. We believe that it is impossible to understand how cuckoo chicks should signal to their host parents without understanding: (1) how the needs of a cuckoo chick compare with those of host young, and (2) how host parents integrate begging signals to determine provisioning rates. There are good reasons for supposing that both will differ between hosts, but precisely how they do remains to be determined.

For example, apart from the reed warbler (which weighs ~12 g), other common British hosts are the dunlin (Eurynidea modularis (~20 g) and the meadow pipit (Anthus pratensis (~18 g). The larger the host, the more similar the needs of a cuckoo chick and a single host young will be. In a dunlin nest, therefore, a cuckoo might have to call fast enough to compensate for the visual difference between its own gape and that displayed by two to three dunlin nestlings, rather than four nestlings in a reed warbler nest. This assumes, of course, that its optimal growth rate is the same in both nests. However, predictions about the cuckoo’s begging displays are further complicated by the fact that the begging call rate of dunlin nestlings is far more rapid than that of reed warbler nestlings (R.M. Kliner and N.B. Davies, unpublished), which might be because dunlin nestlings typically compete with half-sibs rather than full-sibs. By contrast, meadow pipit young are far less vocal (R.M. Kliner and N.B. Davies, unpublished), perhaps because they occupy ground-nests and so are more vulnerable to predators. All of this suggests that cuckoos will have to tune into different offspring-parent communication systems in the nests of different hosts. This presents a fascinating developmental problem, given that cuckoo host races are restricted to the female line 2, hinting that either begging is maternally controlled or that cuckoos learn how to beg in different host nests.

R.M. Kliner
D.G. Noble
N.B. Davies

Dept of Zoology, Downing Street, Cambridge, UK CB2 3EJ
(rmk1002@zoo.cam.ac.uk)

Reply from M. Soler and J.J. Soler

We are grateful to Kliner et al. 2 for clarifying the predictions of their Nature article 2 and for the information about begging behaviour in two further cuckoo host species. This will encourage further work and consideration of other hypotheses.

We agree with most of the points raised by Kliner et al. with one exception: we did not state that ‘what the cuckoo chick gets is what it wants’. The sentence quoted by Kliner et al., in its complete context, means that if the cuckoo chick fails to get the same food provisioning as an entire brood of reed warblers (Acrocephalus scirpaceus), it would starve. Reed warblers would then be a suitable host species.

Kliner et al. suggest that ‘cuckoos will have to tune into different offspring-parent communication systems in the nests of different hosts’. As they state, there is a developmental problem with this prediction. We think that this is a problem and that both suggested solutions are unlikely.

First, if begging were maternally controlled, the existence of well defined cuckoo host races would be expected, not only related to egg morph 2 but also to begging behaviour. This is because cuckoo chicks hatched in nests of another host species with a different offspring-parent communication system would starve. However, ‘egg mimicry host races’ have only been described for about 15 host species, whereas cuckoo eggs have been found in the nests of about one hundred species 9. Furthermore, only 44% of the parasitized nests contained cuckoo eggs of the egg morph corresponding to the host eggs 2. The other possibility suggested by Kliner et al. is that ‘cuckoos learn how to beg in different host nests’. This also seems unlikely because cuckoo chicks usually do not coexist with the host chicks in the nest 9, and are thus not able to learn host nestling begging behaviour.

We consider that the hypothesis of integration of signals explains the exaggerated begging display of common cuckoo chicks in a complex way. We suggested a simpler, but nonetheless, hypothesis that the begging rate of the cuckoo chick is correlated with its level of need and/or with the feeding capacity of the foster parents 7. Our hypothesis has the advantage that it can be applied to other cuckoo species that also have very exaggerated begging displays but in which chicks are reared alongside the host young (i.e. they do not need to compensate for being only one gape in the nest). In one of these species, the great spotted cuckoo (Clamator glandarius), chicks beg at a similar call rate (as perceived by the human ear) when parasitizing four different host species that differ considerably in begging intensity (M. Soler and J.J. Soler, unpublished).

Manuel Soler
Juan José Soler

Departamento de Biologia Animal y Ecologia, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
(msoler@goliat.ugr.es)

References
4 Lack, D. (1968) Ecological Adaptations for Breeding in Birds, Methuen

Correspondence

Per Bak
The Bohr Institute, Blegdamsvæje 17, DK-2100 Copenhagen, Denmark
(bak@selforg.nbi.dk)

References