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Modelling viral evolution and adaptation: challenges and rewards
Susanna C Manrubia

Viral populations are extremely plastic. They maintain and

steadily generate high levels of genotypic and phenotypic

diversity that may result in different adaptive strategies. A major

unknown factor in constructing realistic models of viral

evolution is how mutations affect fitness, which amounts to

unveiling the nature of viral fitness landscapes. Our

understanding of viral complexity is improving thanks to new

techniques as deep sequencing or massive computation, and

to systematic laboratory assays. In this way, we are clearing up

the role played by neutral networks of genotypes, by defective

and cooperative interactions among viral mutants, or by co-

evolution with immune systems. Models of viral evolution are

thus improving their accuracy and becoming more competent

from a conceptual and a predictive viewpoint.
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Introduction
The development of quantitative theories of evolution

faces the challenge of synthesizing general principles

from a huge number of partial observations. The bio-

logical complexity we observe is the result of a long and

entangled history of collective processes, from molecules

to ecosystems, unfolding at many different time and

space scales [1]. Already the adaptive dynamics of a

single population involves dissimilar actors and many

different levels of description and selection [2,3��],
among them a myriad of mechanisms causing genomic

variation, various effects of mutations in phenotype [4,5],

interactions between individuals and the selection of

competing groups [6], the consequences of an adaptive

strategy under endogenous or exogenous modifications,

or the constraints imposed by environments as a function

of the time scales at which they change [7]. At present,

models aiming at establishing general principles bear

little predictive power; models focused on a single or

few observations can yield specific predictions, but suffer

from restricted applicability. In all cases, unavoidable

assumptions based on current experimental knowledge

set the limits of the obtained results.

Viruses occupy a prominent role in the selected constel-

lation of experimental systems employed to dive into the

intricacies of evolution. They form huge, heterogeneous

populations that are in perennial change and readily adapt

or perish [8]. The adaptive strategies of viruses make up a

large, innovative, and ingenious ensemble of mechanisms

[9] that defeat our most creative expectations. A shallow

overview of some of their remarkable features confronts

us with many open questions in the way their populations

change and adapt, as well as with the processes and

mechanisms one should in principle consider in realistic

models of viral evolution. Viruses, especially those with

an RNA genome, perform broad explorations of genome

space due to their relatively short genomes, large popu-

lation sizes, and elevated mutation rates. Their dynamics

are conditioned by the existence of neutral networks of

genotypes (producing the same phenotype) that span

genome space in a likely variable, and as yet mostly

unknown, extent [10–12]. In establishing the relation

between genotype and phenotype, it is critical to con-

ceive fitness landscapes that capture the essentials of how

genomic changes affect function. Viruses generate diver-

sity through point mutations, but also through major

modifications as segment deletion, non-homologous

recombination or segment shuffling. In those conditions,

many viruses produce a large amount of defective gen-

omes that may thrive in appropriate environments thanks

to the complementation offered by complete genomes

[13]. These characteristics and several others are behind

the response of pathogenic viruses to therapies, and

should be taken into account when designing protocols

to control the spread of viral infections.

A complete description of the complexity of a viral

quasispecies is a formidable task. Though it is arguable

whether this knowledge is needed before the develop-

ment of general theories of viral evolution, it is undeni-

able that empirical knowledge guides the way. Novel

techniques as ultra-deep sequencing will ease this endea-

vour, facilitating, for instance, a detailed characterization

of viral genomic diversity [14,15]. The use of microarrays,

where thousands of samples can be simultaneously ana-

lysed, could lead to the quantification of other hetero-

geneous features of a quasispecies, as recently

demonstrated in a study of the fitness landscape and

neutral space of poliovirus [16]. The steady increase in

computational power available should be also of help in
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establishing the much sought effect of mutations in

function, systematically analysing, for instance, how

mutations modify the thermodynamic stability of proteins

[17�].

From viral complexity to simple models of
quasispecies
Simple models might turn into powerful metaphors. This

has been the case of Eigen’s quasispecies model [18]

which, since its application to viruses a few decades ago

[19], has directed (and conditioned) the way many of us

think of viral populations. Eigen’s model inspired the idea

of increased mutagenesis as a plausible mechanism to

induce the extinction of viral infectivity, and that has

proven to be an efficient strategy in vitro [20]. However,

viral extinction can occur through mechanisms different

from crossing an error threshold [21]. Alternative pathways

are stochastic extinction due to the deleterious action of

defective genomes [22,23], the simultaneous fading of all

genomes in the population [24,25], or even the extinction

due to intraspecific competition in a situation of limited

resources [26]. Increases in the mutation rate, on its side, do

not always impair the survival of a virus: more mutations in

difficult situations might mean more lethal mutations

(increasing purifying selection) and also more beneficial

mutations, eventually fostering adaptation [27]. Admit-

tedly, not every detail can be considered if a model has

to be useful; however, it is essential to keep in mind those

ingredients that one has left aside in order to gain un-

derstanding, and recover them whenever models and

experiments disagree (see Figure 1).

The value of mutations
Despite their preeminent role in the persistence of viral

populations, beneficial mutations have been often dis-

carded in evolutionary models. Though one may believe

that this approximation is sensible in highly optimized

populations, experimental observations do not support it

[4,28]. This is but an example (and serves as a warning) of

how intuition fails in the face of evolutionary processes. In

fact, beneficial and compensatory mutations may become

significantly abundant in viral quasispecies displaced

from mutation-selection equilibrium, notably under

environmental changes such as infecting a new host

[29�]. The sign and effect of a mutation depends on

the genomic context where it occurs and on the current

environment and, as such, cannot be assigned an absolute

value.

When mutations are frequent, the dynamics of asexual

populations are affected by interference among mutations

of different sign, and the response of the population

would critically depend, among others, on the underlying

distribution of fitness effects (DFE) [30]. Though the

predominance of mutations with small effects has been

mostly accepted [5,31] since Fisher introduced his geo-

metrical model of adaptation [32], more abundant and

more accurate measurements point to a significant abun-

dance of mutations of average and large effect in viruses

[29]. The functional form of the DFE is receiving con-

siderable attention for obvious reasons [4], but no agree-

ment on its mathematical form has been reached so far.

Data to determine whether the DFE has a universal

functional form are still insufficient, though mounting

empirical evidence indicates that realistic fitness land-

scapes present local correlations and approach random

landscapes as mutations accumulate [33], the transition

between the two regimes taking place at a distance (in

number of mutations) that may take appreciably large

values [34��]. That scenario is qualitatively analogous (we

do not know yet whether it is quantitatively equivalent as

well) to the non-trivial fitness landscape of the sequence-

to-RNA secondary structure map [35,36]. A reliable

knowledge of the mathematical form of the DFE should

help us assess the suitability of different fitness land-

scapes to capture the essentials of viral dynamics and

molecular quasispecies [37,38,39�].

Beyond the cloud of mutants
The relative commonness of mutations of large effect in

viral fitness agrees with the raising view that (quasi-)

neutrality is an essential ingredient in adaptation and

innovation [3��]. Large networks formed by mutually

accessible genotypes with almost equal fitness should

permit the costless drift of viral populations through

the space of genotypes (see Figure 2(a)). Neutral net-

works are intimately intertwined in that high-dimensional

space, implying that most phenotypes are close to one

another in terms of the number of mutations that separate

them. Extending Wright’s metaphor, we should imagine

the corresponding fitness landscape as an ensemble of

layers (the networks of genotypes of equal fitness, or

phenotypes) at a distance of one or few mutations in

selected positions. The adaptive dynamics of viral popu-

lations on such landscapes would consist of periods of

stasis — while populations drift through a neutral net-

work —, punctuated by sudden switches between neutral

networks at those times when a fitter phenotype is

encountered [11,40]. This behaviour has been identified

[12] and modelled [41,42�] in influenza A and in measles,

where the immune system of the host forces the con-

tinued appearance of antigenic novelty if the virus is to

avoid extinction.

The structure of viral populations in a genotype space

fragmented into vast and interconnected neutral net-

works is very different from a cloud of variants structured

around an optimal sequence. Emphasis should be put

instead in high-fitness phenotypes represented by a large

set of genomes that may be mutually distant from a

genealogical point of view (Figure 2(b)). The spread of

the population on the current network determines its

potential to find and fix new phenotypes when selective

pressures change. The co-evolution between virus and

532 Virus evolution
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immune system, as above, or the response to any other

changing selective pressure could be depicted as a

continuous change in the relative height of different

layers, that is to say, in the fitness of possible phenotypes.

The incorporation of neutral networks to models of viral

evolution, together with a realistic representation of the

environment, is a challenge to future evolutionary models

[43].

Adaptation to therapies
Viruses have an astonishing ability to escape medical

treatments aimed at causing their extinction. The question

is not whether a virus will develop resistance to an antiviral

drug, but when will it occur. The simultaneous adminis-

tration of two or more drugs has been a successful strategy

to delay the appearance of resistant mutants [44]. In the

search for efficient therapeutic protocols, three fundamen-

tal issues that are aided by modelling and computational

techniques are first, the characterization of the response of

viral populations to antiviral drugs [45] through a more

realistic implementation of their evolutionary strategies

[46,47], second, how to optimize the tempo and mode of

drug administration in order to minimize viral load and to

maximize the time of emergence of resistant forms [48��],
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Figure 1

(a) Neutral mutations

(c) Variable
environments

(d) Complementation
Genome fragmentation

(e) Stochastic extinction
Defective interfering particles

(f) Lethal mutagenesis
Quasispecies diversity
Interference

(b) Fitness landscape
Genotype-phenotype map
Effect of point mutations
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Models of viral evolution: partial insights to a complex problem. A viral population, especially if affected by large mutation rates — as it happens with

RNA viruses —, is a large, heterogeneous, and complex ensemble of interrelated genomes. Tractable models of viral evolution can only describe part

of the current heterogeneity. Studies on the neutral network of the most common phenotype (a) often discard the ensemble of neighbouring

phenotypes with different fitness. Very often (b), analyses of the effect of point mutations do not take into account the presence of defective particles

or incomplete genomes. In characterizing the response of viral populations to variable environments (c), it is the substitution of one phenotype by

another in co-evolution with an immune system, the relative success of an alternative phenotype in front of the wild type under an increase in

temperature, or the fixation of suboptimal phenotypes under the effect of population bottlenecks, for instance, that are analysed. How these new

phenotypes emerge depends on the localization of the original population in the space of genotypes, a property that is difficult to take into account in

those studies. Research on fragmented genomes and how they compete with a wild type (d) tends to implement only those two strategies. Defective

interfering particles (e) are typically explored by quantifying their effect on the performance of the wild type, while heterogeneity within the

subpopulation of defectors, for instance, is commonly dismissed. The consequences of increased mutagenesis (f) are very often investigated in

models that assume a systematic negative effect of a larger mutation rate, and thus discard beneficial and compensatory mutations. By focusing on

one or a few viral features, we gain understanding but loose the big picture.

www.sciencedirect.com Current Opinion in Virology 2012, 2:531–537
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and third, which are the relevant interactions between the

immune system and a viral population [49]. Combination

therapies need to be complemented with studies to deter-

mine how dissimilar drugs interact [50]. For example, in

the case of a mutagen and an inhibitor of viral replication, it

may occur that the sequential administration of the two

drugs is more efficient than their simultaneous adminis-

tration [51]. The non-linear interaction between the two

534 Virus evolution
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Viral fitness landscapes. (a) Schematic representation of neutral networks. Each layer stands for a different phenotype, its vertical position represents

its fitness f. Each circle corresponds to a genotype, genotypes with the same colour yielding the same phenotype. If two genotypes can be attained

through mutation, a bond links them. Some phenotypes may be obtained from a large number of genotypes and the corresponding networks are

connected, meaning that a viral population could attain distant regions of genotype space without paying a fitness cost (as in the red example). It is

likely that rare phenotypes can be only obtained from isolated and small groups of genotypes, being thus difficult to find and fix. The black curve

illustrates a possible dynamical trajectory of a population ‘climbing’ from the low-fitness violet phenotype to the red phenotype. At each step, fitness

either remains constant or increases. Phenotypes of intermediate fitness are not necessarily visited. These trajectories substitute the image of a walker

moving uphill in smooth landscapes. Evidence of such drift-and-sweep behaviour has been found in [12]. (b) Cartoon of the structure of a viral

population. Viral populations are finite and, as such, not all genotypes compatible with a given phenotype will be present. If the phenotype extends

over large regions connected by few genotypes, the viral population may be apparently formed by two genealogically distinct groups, as observed in

[42]. High mutation rates imply the frequent generation of mutants of lower fitness, due to the genomic proximity of occasionally very different

phenotypes (yellow, blue, and green circles). The dotted line is a projection of the adaptive trajectory shown in (a). (c) One-dimensional fitness

landscape. Black diamonds stand for other possible phenotypes not depicted in (a). Current measures of actual landscapes suggest the presence of

local correlations (there is a higher likelihood that neighbouring genotypes correspond to similar phenotypes than distant ones) and a remarkable

degree of roughness [35]. In all panels of this figure, each genome has only four neighbours, while a genome of length L whose units come from a four-

letter alphabet has 3L neighbours. In those spaces of high dimensionality, neutral networks have topological properties impossible to visualize in two-

dimensional projections.
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pharmaceuticals depends in a non-trivial way on the admi-

nistered doses and on the reproductive strategy of the virus

[48] (Box 1).

Conclusions
The decision to include or to dismiss a certain viral

feature or process in a formal model may change in a

qualitative way the nature of the dynamics and eventual

fate of the (virtual) viral population. Simple models aid to

develop conceptual scenarios and permit to establish a

correspondence between basic mechanisms and evol-

utionary dynamics. They may suggest new experiments

that, in case of comparing favourably with the predictions

of the model, validate the latter. Nonetheless, we should

be cautious when extending evolutionary models to other

systems, since the original assumptions may not hold and,

as a consequence, neither the expectations derived from

the model.

Thanks to an always increasing body of experimental

results and to the advances in genomic and computational

techniques, viral populations are being characterized to

an unprecedented degree of detail. These efforts should

lead to a more realistic quantification of the effect of

mutations in fitness. Though we have just begun to fight

that challenge, it is clear that realistic fitness landscapes

are neither smooth nor random, and that the conclusions

obtained in too simplistic scenarios may be misleading. A

subsequent step would be to construct a statistical theory

able to derive models on the evolution of phenotypes

from the properties of the space of genotypes.

Major rewards should come from the application of well-

motivated, specific models to control the progress of viral

infections. Knowing the strengths of viruses, as the qual-

ity of their diversity or the cooperative strategies they use

within their populations is a first step towards designing

effective protocols to limit their spread. From the synergy

among a deep characterization of viral genomic diversity,

knowledge of viral evolutionary strategies, drug inter-

action and viral co-evolution with the immune system

should emerge a powerful guide to design successful

therapies able to decrease the viral load and to delay

the appearance of resistant forms.
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