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A suitable model to dive into the properties of genotype-phenotype landscapes is the
relationship between RNA sequences and their corresponding minimum free energy sec-
ondary structures. Relevant issues related to molecular evolvability and robustness to
mutations have been studied in this framework. Here, we analyze the one-mutant neigh-
borhood of the predicted secondary structure of 46 different RNAs, including tRNAs,
viroids, larger molecules such as Hepatitis-δ virus, and several random sequences. The
probability distribution of the effect of point mutations in linear structural motifs of the
secondary structure is well fit by Pareto or Lognormal probability distributions func-
tions, independent of the origin of the RNA molecule. This extends previous results
to the case of natural sequences of diverse origins. We introduce a new indicator of
robustness, the average weighted length of linear motifs (AwL) and demonstrate that
it correlates with the average effect of point mutations in RNA secondary structures.
Structures with a high AwL value display the highest structural robustness and cluster
in particular regions of sequence space.

Keywords: RNA secondary structure; sequence-structure map; mutational effects; linear

motifs.

1. Introduction

Knowledge of the functional relationship between mutation and phenotypic change
is essential to develop phenomenological theories of evolution and adaptation. Still,
fitness depends on a number of different features whose relative importance is often
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determined by environmental conditions. The efforts to derive a unique relationship
between mutations and their effects thus meet a profound difficulty.

Early attempts to solve this conundrum began with simple assumptions on
the dependence between fitness and the number of mutations in a genome [18],
thus accepting the view that evolution was occurring on a smooth, Fujiyama-like
landscape. Since the distribution of fitness effects corresponding to beneficial or
deleterious mutations were thought to take different functional forms, some stud-
ies focused only on mutations having beneficial effects [12]. The assumption of a
random landscape for the relation between genotype and phenotype — by ignor-
ing correlations between the phenotype yielded by a genome and its neighbors —
predicts an exponential shape for the distribution of beneficial effects [22]. Other
studies have identified the dependence of mutational effects on the environment
where they occur [21]. As the knowledge of the field has advanced through an accu-
mulation of empirical observations [30, 33, 19, 23], it has become increasingly clear
that current theories are of no general applicability [27, 26, 34].

A step forward may result from considering partial aspects of fitness that, though
unable of fully explaining the viability of an organism in a given environment, are
amenable to quantification. Previous works [16, 9, 38, 3] have carried out systematic
computational studies of in silico populations of RNA sequences at different stages
of adaptation using the secondary structure of RNA sequences as a proxy for a
fitness trait. The effect of a mutation in a given molecule can be directly evaluated
as the structural distance between the two folded conformations, the native and
the mutant. Computational studies have revealed that the distribution of effects of
point mutations on RNA secondary structure is characterized by a large number of
mutations having small effect and, however, a significant number of mutations able
to cause major disruptions of the secondary structure [32]. The probability distribu-
tion that better explained the numerical data is a function with a sizeable amount
of large effects, either a Lognormal or a Pareto distribution [34]. These functions
are related to the actual landscape that maps RNA sequence to the corresponding
minimum free energy secondary structure, and support the existence of nontrivial
correlations between neighboring sequences, as identified in other studies [8, 41].
The complex structure of the RNA-folding map has important implications for
evolution and adaptation at the molecular [7] and likely at higher levels.

In this work, we focus on the functional form of the distribution of effects
of mutations on the RNA secondary structure of a number of natural, evolved
sequences. To this end, we have analyzed a set of natural RNA sequences of various
origins, ranging from length 71 (tRNA of glycine of Danio rerio) to 1682 (genome
of the Hepatitis-δ virus). For comparison, we have also analyzed five randomly gen-
erated sequences with lengths 100, 200, 500, 1500 and 3000. We have performed
a systematic study of the one-mutant neighborhoods of all sequences and of the
functional form of the distribution of effects of mutations on their predicted min-
imum free energy secondary structure. In all cases, the distributions are well fit
either by Pareto or Lognormal distributions, both characterized by having a large
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weight in small values of the relevant variable and by fat tails (i.e., their decay is
sub-exponential at large values of the variable). Among the sequences studied, we
include 29 viroids analyzed in a previous work [29] in which it was suggested that
viroids appear to have increased their structural robustness along their predicted
phylogeny by evolving increasingly rod-like structures. We here further explore the
relationship between RNA secondary structure and structural robustness, establish-
ing a clear correlation between the average length of linear motifs in the structure
and the effect of mutations, independently of the origin of the sequence.

2. Methods

2.1. RNA sequences

Table 1 lists the set of RNA sequences used in this work. The sequences of each
viroid species, the Escherichia coli DH1 16S RNA, and Hepatitis-δ virus were

Table 1. RNA sequences used and their main properties. Analyzed sequences are listed in the
first column. They have been ordered according to their length. Numbers 1 to 10 correspond to
tRNA sequences, where the indicated triplet corresponds to the anticodon sequence; numbers
13 to 41 to viroids of the Pospiviroidae family (except for 14, 26, 27 and 41, which belong to
the Avsunviroidae family); 11, 12 and 42 to 46 are as described in the Table. Second column:
Average effect of mutations (σi) as defined in Eq. (1). Third column: Fraction of mutations with
less than 10% effect on secondary structure. Fourth column: Function yielding the best fit to
the distribution of effects of mutations on secondary structure and the corresponding correlation
coefficient r2. Fifth column: Sequence length. Sixth column: Average weighted length of linear
motifs (AwL) in each secondary structure, as defined in Eq. (2).

Frac. with
RNA sequence σi <10% effect Best fita Length AwL

1. Danio rerio tRNA Gly ACC 0.174 0.435 P, 0.902 71 27.9
2. Caenorhabditis elegans tRNA Asp GUC 0.318 0.311 B, 0.931 72 72
3. Saccharomyces cerevisiae tRNA Asp GUC 0.183 0.331 E, 0.993 72 11.2
4. Homo sapiens tRNA Val UAC 0.273 0.312 P, 0.994 73 20.9
5. Bacillus subtilis tRNA Arg CCG 0.160 0.461 P, 0.975 76 19.9
6. Escherichia coli tRNA Ala UGC 0.450 0.326 B, 0.983 76 76
7. Thermus thermophilus tRNA Lys UUU 0.223 0.459 L, 0.995 76 14.3
8. Salmonella enterica tRNA Pro CGG 0.326 0.258 G, 0.993 77 14.6
9. Arabidopsis thaliana tRNA Tyr GUA 0.194 0.359 L, 0.985 85 18.3

10.Yersinia pestis tRNA Tyr CGG 0.277 0.382 E, 0.992 85 16.5
11. Random RNA n = 100 0.212 0.152 P, 0.951 100 30.1
12. Random RNA n = 200 0.192 0.312 P, 0.946 200 17.1
13. Coconut cadang-cadang viroid 0.0192 1.000 L, 0.977 246 246
14. Avocado sunblotch viroid 0.0496 0.766 L, 0.972 247 247
15. Citrus IV viroid 0.0986 0.718 P, 0.909 248 248
16. Coconut tinangaja viroid 0.0219 0.912 L, 0.990 254 254
17. Hop latent viroid 0.0680 0.780 P, 0.965 256 256
18. Coleus blumei 1 viroid 0.0152 0.977 P, 0.972 284 284
19. Citrus III viroid 0.0724 0.619 P, 0.964 294 221.4
20. Hop stunt viroid 0.0351 0.839 L, 0.994 297 297
21. Coleus blumei 2 viroid 0.0616 0.721 P, 0.928 301 301
22. Apple dimple fruit viroid 0.0620 0.746 P, 0.967 306 306

1250052-3

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
30

.2
06

.9
2.

10
1 

on
 0

3/
07

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 2, 2013 16:35 WSPC/S0219-5259 169-ACS 1250052

S. C. Manrubia and R. Sanjuán

Table 1. (Continued )

Frac. with
RNA sequence σi <10% effect Best fita Length AwL

23. Pear blister canker viroid 0.2430 0.397 L, 0.978 315 58.7
24. Citrus bent leaf viroid 0.0275 0.885 L, 0.986 318 318
25. Apple scar skin viroid 0.0263 0.819 L, 0.979 329 329
26. Eggplant latent viroid 0.0331 0.794 P, 0.968 335 64.8
27. Peach latent mosaic viroid 0.1241 0.568 P, 0.960 337 73.9
28. Chrysanthemum stunt viroid 0.0538 0.672 P, 0.985 356 107.6
29. Potato spindle tuber viroid 0.0163 0.878 L, 0.990 359 359
30. Mexican papita viroid 0.0212 0.740 L, 0.994 360 360
31. Tomato apical stunt viroid 0.0638 0.544 P, 0.927 360 360
32. Tomato planta macho viroid 0.0184 0.809 L, 0.986 360 360
33. Tomato chlorotic dwarf viroid 0.0177 0.945 L, 0.990 360 360
34. Coleus blumei 3 viroid 0.0127 0.974 L, 0.984 361 361
35. Grapevine yellow speckle 2 viroid 0.0607 0.682 P, 0.939 363 363
36. Grapevine yellow speckle 1 viroid 0.1281 0.673 P, 0.885 367 367
37. Australian grapevine viroid 0.0298 0.731 P, 0.980 369 369
38. Columnea latent viroid 0.0318 0.836 P, 0.981 370 370
39. Iresine 1 viroid 0.0167 0.947 L, 0.986 370 370
40. Citrus exocortis viroid 0.0567 0.579 P, 0.927 371 371
41. Chrysantemum chlorotic mottle viroid 0.1820 0.547 P, 0.985 399 47.3
42. Random RNA n = 500 0.1235 0.557 L, 0.994 500 42.1
43. Random RNA n = 1500 0.0404 0.685 P, 0.995 1500 32.8
44. E. coli 16S 0.0988 0.513 P, 0.985 1542 33.5
45. Hepatitis-δ virus 0.0041 1.000 L, 0.998 1682 1525.7
46. Random RNA n = 3000 0.0660 0.647 P, 0.995 3000 33.9

aB= Beta, G= Gamma, E= Exponential, L= Lognormal, P= Pareto.

downloaded from GenBank. Accession codes for viroids are reported in Ref. 29.
The accession code for E. coli DH1 is CP001637 and the 16S RNA corresponds to
genome positions 1152612 to 1154141. The Hepatitis-δ virus genome accession code
is NC001653. tRNA sequences were downloaded from the Genomic tRNA database
web site (http://gtrnadb.ucsc.edu). Random sequences were generated by drawing
one of the four nucleotides with equal probability at each position.

2.2. RNA folding

For secondary structure folding and calculation of Hamming distances, we used the
Vienna RNA package [14], version 1.5. Folding temperature was set to 25◦C for
viroids and 37◦C for the other sequences. Given each original sequence of length
n, we compared its corresponding minimum free energy secondary structure to the
3n structures yielded by all its one-substitution mutants. The Hamming distance
was evaluated through a position-wise comparison of each pair of secondary struc-
tures in dot-bracket notation. This yields the distance ∆i,j between sequence i and
its one-substitution mutant j, which we always took with positive sign. Since the
studied sequence and its mutants are of the same length, the Hamming distance
performs (statistically) as well as any other more complex definition of distance.
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Table 2. Functions used to fit data. We have used five different probability distribution functions

to fit the effects of point mutations on RNA secondary structure. We show the functional form of the
probability distribution function P (x) and of the corresponding cumulative probability distribution

(CDF), Q(x ≤ Λ) =
R Λ
0

P (x)dx for each case. In our fits, we have used the latter, with parameters
that yield the minimum least squared deviation from data.

Exponential [λ] Γ[a, b] β[a, b] Pareto [k, a] Lognormal [m, σ]

P (x) λe−λx e−x/b

baΓ[a]
xa−1 Γ[a+b]xa−1(1−x)b−1

Γ[a]Γ[b]
aka

xa+1
1

xσ
√

2π
e
− (ln(x)−m)2

2σ2

Q(x ≤ Λ) 1 − e−λΛ γ[a,Λ/b]
Γ[a]

βΛ[a,b]
β[a,b]

1 −
“

k
Λ

”a
1
2

+ 1
2
erf

h
ln(Λ)−m

σ
√

2

i

The normalized probability distribution of changes in secondary structure (i.e.,
distance) for each sequence i is called Πi(∆).

2.3. Distributions of effects of mutations

As in a previous study with computationally evolved RNA sequences [34], we
used five different probability density functions to fit the distributions of muta-
tional effects. Table 2 shows the functional form of the probability distribu-
tions assayed P (x) and of the corresponding cumulative probability distribution,
Q(x ≤ Λ) =

∫ Λ

0 P (x)dx. The average effect of mutations σ, irrespectively of whether
they preserve or modify the native secondary structure is obtained from Πi(∆) as

σi =
∫ ∞

0

∆Πi(∆)d∆. (1)

2.4. Linear motifs

The complexity of a secondary structure [11] can be quantified by measuring the
abundance of its structural motifs [15]. Here we introduce linear motifs, defined as
any structural element that contains at least a hairpin loop (a loop of degree 1)
closed by a stem and finishes either in a multi-loop (loop of degree 3 or higher) or
in the 3′ and 5′ ends (dangling ends are included and counted as part of the linear
motif). A linear motif might contain bulges and interior loops (both are loops of
degree 2), but not branches (which, by definition, attach through a multi-loop and
hence form a new linear motif). The size of a linear motif is defined as the total
number of nucleotides it contains, including paired and nonpaired nucleotides. A
more detailed definition of structural elements can be found in Ref. 40 or 15.

The structure corresponding to a sequence of length n will contain, in a general
case, kn linear motifs of sizes gj , j = 1, . . . , kn, calculated as just defined. The
average weighted length (AwL) of linear motifs in that structure is evaluated as

AwL =
1
n

k∑
j=1

(gj)2. (2)

The contribution of each motif is weighted through the fraction gj/n: the more
motifs, the smaller (typically) the latter quantity.
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In order to get further insight on the structural meaning of linear motifs and
AwL, let us estimate the latter quantity in some representative case-examples. Pre-
vious works have analytically calculated the asymptotic number of different struc-
tural motifs using a combinatorial approach where preferential pairing between
nucleotides or energetic constraints are not considered [15]. Still, that approach is
useful in that it retrieves the functional behavior of the expected number of struc-
tural elements (as a function of sequence length, for example) that are qualitatively
reproduced in more realistic (numerical) studies [37].

The expected number kn of linear motifs in a secondary structure of length n

for a two-letter alphabet can be put in correspondence with the number ln(d) of
interior loops of degree d:

kn ∼
∑
d>2

(d − 1)ln(d), (3)

for n large enough. If we assume that all linear motifs are approximately of the same
length,a the average size of linear motifs fulfills AwL ∼ n/kn. For the particular
case of structures with stems of length one or larger and hairpin loops formed by
at least m = 3 three unpaired nucleotides, the use of Eq. (3) predicts that

lim
n→∞AwL ∼ n

kn
= 4.159 . . . , (4)

where we have used

ln(d) =
α2(1 − α)

(1 − 2α)2(2 + m − 2mα)

(
1 − 2α

1 − α

)d

n, (5)

as obtained in Ref. 15 to calculate first kn, and finally substituted the value α =
0.4369 that corresponds to the case m = 3 when stacks have length larger than or
equal to one.

An improvement to the result above is obtained by considering the four-letter
alphabet A, C, G, U, which yields a different value of ln(d), but still finite and
independent from n, for n → ∞ [15]. Numerical studies of random RNA sequences
folded in their minimum free energy structure reveal that the distribution of loop
degrees is essentially dominated by combinatorial principles, though stacks tend to
be longer [37]. Hence, we should expect that the asymptotic value of AwL for the
random sequences analysed in this work saturates at a finite value of AwL larger
than the one above.

The previous result for random sequences differs from the functional behavior
expected under different structural assumptions. If the number k of linear motifs
would be a constant independent of the sequence length, for example, then gj = n/k,
∀ j, and AwL = n/k. In this case, AwL increases with n since the relative size of
linear motifs also grows. The limit case is represented by rod-like structures without
branches (as many viroids), for which AwL = n.

aThis is an acceptable assumption in the light of numerical studies of random sequences which
show that the distribution of stack sizes has a well defined, narrow maximum [8].
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2.5. Computational resources

All simulations were performed in a Linux cluster using a Perl script available upon
request. For statistical analyses we have used the packages in Mathematica 5.2.

3. Results

3.1. Effect of mutations on RNA secondary structure

Figure 1 shows four representative examples of the cumulative distribution of effects
of mutations on the predicted RNA secondary structure for four sequences folding
into a rod-like structure. The robustness of such conformations has been previously
studied [29] and is confirmed here by the fact that most mutations affect the sec-
ondary structure in less than 20%. Figure 2 shows the location of the remaining
mutations. In the case of Coconut cadang-cadang viroid, there is no mutation able
to change the structure above 10%, the mutation with the highest effect being
224A → C (9.8% effect). The second example, Fig. 2(b), corresponds to Mexican
papita viroid. Mutation 199G → A, U has a large effect of 85.6% in the secondary
structure. This is an exceptional effect considering that 99% of the mutations mod-
ifying the secondary structure of this viroid change it in less than 20%. The case
of Columnea latent viroid, shown in Fig. 2(c), yields additional information. It
shows how mutations with a significant effect on fitness (above 20%) cluster in
a well defined region of the folded molecule. A similar situation is observed with
Avocado sunblotch viroid, shown in Fig. 2(d), where, in addition to the cluster-
ing of mutations, we observe a large number of positions changing the secondary

0 0.1 0.2 0.3 0.4
Λ/n

0

0.2

0.4

0.6

0.8

1

Q
(x

<
 Λ

)

Coconut cadang-cadang Vd
Mexican papita Vd
Columnea latent Vd
Avocado sunblotch Vd

Fig. 1. Fits to the cumulative distribution of effects of mutations for rod-like structures. Four
viroids folding into a rod-like secondary structure are shown. In each case, the function yielding
the best fit is represented (see Table 1). Since AwL = n in these cases, the functions are fit in the
whole range of variation of ∆. Most mutations have mild effects on secondary structure, only two
mutations in the Mexican papita viroid (not shown) affect the structure in more than 45%. See
Fig. 2.
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(a)

(b)

(c)

(d)

Fig. 2. Rod-like viroids and mutations with large effect on structure. Circles indicate mutations
causing changes above 20% in the secondary structure. Stars show the position of the mutation(s)
with the largest effect. (a) Coconut cadang-cadang viroid, the most disrupting mutation is 224A →
C, which modifies the structure in a 9.8%. (b) Mexican papita viroid. Mutation 199G → A, U
has a large effect of 85.6% in the secondary structure. (c) Columnea latent viroid. There are
three mutations (69G → A, 71G → A, and 300C → G) causing a change of 40.5% in structure.
(d) Avocado sunblotch viroid. Up to 17 different mutations in 12 different positions cause a
reestructuring of 33.2%.

structure in exactly the same amount (33.2%). These observations indicate that
secondary structures may respond in a modular fashion to mutations: There are
specific regions where mutations have a fixed effect arising from disruption of a well-
defined substructure within the molecule. The cumulative distributions of effects of
mutations shown in Fig. 1 allow us to distinguish values of ∆/n (rescaled distance
to the predicted minimum free energy structure) where the distribution jumps (as
around 0.17 for Avocado sunblotch viroid), indicating the presence of a number of
mutations causing similar structural rearrangements.

Figure 3 further clarifies the interplay between structure and the effect of muta-
tions. We depict three branched structures and indicate those positions able to
induce structural changes above 40% when mutated. In Fig. 3(a) we give as first
example Arabidopsis thaliana Tyr tRNA GUA. Most mutations in the two outer
short branches cause major disruptions of the secondary structure. In contrast, the
longest stem holds only a few positions able to induce major changes. This implies
as well that mutations along that element do not affect so easily other structural
motifs. A more obvious case is that of Peach latent mosaic viroid [Fig. 3(b)]. None
but four large-effect mutations are located along the longest stem, and they occur
at the boundary of this motif (see also Fig. 2 in Ref. 29). This observation can
be generalized to any linear motif, as the third example shown in Fig. 3(c) fur-
ther supports. The fraction of point mutations causing large disturbances in the
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Fig. 3. Examples of branched structures and mutations with large effect. Positions highlighted
through a circle correspond to mutations affecting the secondary structure in more than 40%.
Mutations occurring in long peripheral motifs are less able of affecting the structure. This effect
becomes clearer the larger the RNA sequence. (a) tRNA of Tyrosine of Arabidopsis thaliana; (b)
Peach latent mosaic viroid (Avsunviroidae family); (c) 16S unit of E. coli.

secondary structure decreases as the length n increases. They also tend to occur
close to potentially weak positions, near internal loops, branching points or regions
with a large fraction of unpaired nucleotides, which might more easily participate
in large structural rearrangements.

3.2. Functional form of the distribution of effects

of mutations on linear motifs

In a previous computational work with RNA sequences [34], it was observed that
none of the probability distribution functions commonly used to fit the effect of
mutations in fitness (compiled in Table 2) could account for the analyzed data in the
whole range of ∆ values. Actually, jumps in Π(∆) are frequent and do not disappear
by using larger sequences. Instead, they seem to characterize the structure under
study by identifying those positions which, when mutated, disrupt the structure in
a precise fashion, as shown in the previous section for several case-examples. For
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mutations causing large rearrangements, there seems to be a cascade effect where
more than one simple (linear) motif is affected, thus opening pairs in the native
structure and forming new pairs at previously distant positions. The situation is
thus complex and, for this reason, we have decided to study the quantitative prop-
erties of the distribution of effects in the secondary structure only when the effect
of mutations is below the typical size of linear motifs in the structure. With this
prescription we mostly exclude mutations causing large structural rearrangements,
which are of a different nature and largely depend on the structure considered. We
will use the average weighted length AwL to set the maximal value of the change in
the secondary structure to fit the data. In the case of rod-like viroids, functions are
fit in the whole range while, as the number of branches in the structure increases,
the range shrinks. In the particular case of random sequences, Λ/n → 0 as n grows:
Since linear motifs have a typical size that does not increase with sequence length
(see Sec. 2.4), the range where the distribution of effects of mutations is fitted
shrinks with n.

Figure 4 gives three examples of cumulative distributions Q(x< Λ) for sequences
of different lengths (shown in Fig. 3). As an illustration of how different functions
fit the distribution up to AwL/n, we show for each case the five functions assayed,
as specified in the legend and in Table 2. For the sake of comparison, the x-axes
have been rescaled by the length of the sequence. Amongst the functions assayed,
note that the exponential distribution performs worst.

The analysis above has been carried out with all 46 sequences in Table 1. In
all cases, we observe a large number of mutations with small effect. However, the
decay of the distribution is not fast, as revealed by the fact that exponentially
decaying functions fit data typically worse than probability distributions with fat
tails. In most cases data are best fit by a Pareto or by a Lognormal distribution. The
common feature of these two distributions is their large weight at small values of
the variable and the slow, sub-exponential decay at large values of the variable (up
to the typical length of linear motifs). For some of the smallest sequences (tRNAs),
however, the Exponential and other distributions with an exponential tail, such as
the Gamma or Beta, can also provide the best fit. This nonetheless, it is worth
to observe that there are fewer, and statistically less reliable, points for the fit in
tRNAs, such that the distributions are more subjected to intrinsic noise due to the
short length of those sequences. The analysis has been completed by performing
a Kolmogorov–Smirnov two-sample test. The accumulated probabilities predicted
by the best-fitting model were not significantly different from the observed values,
except for the Coleus blumei 1 viroid (D = 0.642, and P < 0.01, for 12 data points).

3.3. Structural motifs and the effect of mutations

The study of a number of case examples has shown some facts about the relation-
ship between structural motifs in the secondary structure and the effect of point
mutations. As one may intuitively expect, longer sequences tend to show smaller
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Fig. 4. Examples of probability distributions of effects of mutations. The corresponding RNA
structures are shown in Fig. 3. Five different functions have been fitted up to the value Λ = AwL,
which characterizes the weighted length spanned by a typical linear motif. That value is signaled
by a vertical, long-dashed line in each plot. (a) tRNA of Tyrosine of A. thaliana has size n = 84
and AwL = 18.3; (b) Peach latent mosaic viroid has length n = 337 and AwL = 73.9; (c) 16S unit
of E. coli, with n = 1542 and AwL = 33.5.

mutational effects (Spearman’s ρ = −0.538, P = 0.003). However, this association
is mainly dependent on tRNAs, which are both the smallest sequences considered
and those with the greatest mutational effects. If we remove this group, the above
correlation is essentially lost (ρ = 0.118, P = 0.494). The native structure free
energy ∆G correlates strongly with the sequence length n: Spearman’s ρ = 0.948
for all sequences and ρ = 0.910 without tRNAs, P < 0.001 in both cases. Hence, ∆G

behaves similarly to n in relation to the average effect of mutations on secondary
structure σ. We obtain ρ = 0.612, P < 0.001 for all sequences and ρ = −0.260,
P = 0.126 if tRNAs are removed. Considering sequence length (or ∆G) alone also
fails to explain some clear patterns, such as the greater mutational effects among
avsunviroids (0.097 ± 0.035) compared with pospiviroids (0.051 ± 0.010), despite
their similar average sequence length (330 and 327 nucleotides, respectively) or the
over twenty-fold difference between the average mutational effect in HDV and a
random sequence of similar length (Table 1).
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Fig. 5. Dependence of the response to mutations on structural properties. We represent the
relationship between the average effect of mutations σ in the secondary structure of each of the
46 RNA sequences studied as a function of the average length of weighted linear (AwL) motifs.
Different groups are as described in the legend; the two open circles correspond to E. coli 16S
(left) and to Hepatitis-δ virus (right). The dependence of all data is well fit by a function of the
form y = ax−b, with a = 1.5 ± 1.5 and b = 0.66 ± 0.08.

We then used the average weighted length of linear motifs AwL to evaluate the
relationship between the size of linear substructures within a secondary structure
and its mutational robustness. Notice how random sequences cluster around AwL �
30, in qualitative and quantitative agreement with the analytical expectations in
Sec. 2.4. On the other hand, the AwL coincides with sequence length for rod-like
structures and is close to that length if a rod-like structure is interrupted by another,
short stem (e.g., in the Citrus III viroid, Table 1). The lower the AwL values, the
more evenly branched the structure is (random sequences and tRNAs being good
examples). As shown in Fig. 5, AwL presents a negative correlation with the average
effect of mutations (ρ = −0.738, P < 0.001) which is not lost after removal of the
tRNA group (ρ = −0.589, P < 0.001). The partial correlation between AwL and σ

taking the sequence length n into account yields ρ = −0.493, P = 0.001, and when
the tRNA group is removed ρ = −0.479, P = 0.004. Furthermore, AwL allows us to
account for the greater mutational robustness of the pospiviroid rod-like structures
compared to those of avsunviroids or the remarkably small effects shown by HDV,
whose structure is also rod-like. Therefore, the robustness of a secondary structure
depends on its degree of linearity in addition to its size.

4. Discussion and Conclusion

Statistical analysis of the effects of all single nucleotide substitutions on the pre-
dicted secondary structure of a wide variety of RNAs has allowed us to reach several
conclusions which appear to be widely general. First, mutations of small effect are
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more common than those of large effect, a property that is shared by essentially all
biological systems examined to date [6, 28]. This feature represents another quan-
tification of the local correlations observed in RNA sequence space when mapped
to the secondary structure [42, 36]. Second, exponential-tail distributions such as
the Exponential, the Gamma, or the Beta provide a less satisfactory fit than fat-tail
distributions such as the Lognormal or the Pareto, again similar to what has been
empirically observed in a variety of natural systems [6, 28]. This second observation
is in agreement with the remarkable degree of accessibility of significantly different
RNA secondary structures within a few point mutations from almost any randomly
chosen sequence [25, 13]. Third, mutations occurring in neighboring positions usu-
ally have similar effects on the secondary structure, because they affect the same
set of motifs and probably cause similar rearrangements. In the most extreme sit-
uation, there is a set of mutations with exactly the same effect, as was the case of
Avocado sunblotch viroid. Such modular behavior of RNA structures could at least
partially account for the fact that a certain fraction of mutations has unusually large
effects and thereby explain the good fit obtained by fat-tail distributions. We can
hypothesize that, analogously, a modular organization of metabolic or regulatory
pathways [24, 1] might explain why mutational fitness effects are well described by
this family of distributions in many organisms. Fourth, the overall robustness of a
given RNA secondary structure depends on its shape rather than just on its size:
Rod-like structures with long linear motifs are more resilient to structural changes
than branched structures. Possibly, mutations causing small effects in an RNA
secondary structure limit their action to the linear motif where they are located,
whereas propagation of the effect of a mutation beyond the substructure where it is
found might cause a cascade of rearrangements. This further speaks for an uneven
distribution of secondary structures in sequence space. Despite an extremely high
interwoveness of RNA secondary structure neutral networks [13], our results sup-
port that structures with a higher-than-average amount of linear motifs tend to
cluster in the space of sequences. This reveals an aspect of robustness additional
to neutrality — usually defined as the maintenance of the secondary structure
under the action of mutations, a quantity which is maximized in highly connected
regions of the neutral network for every given structure [16]. In cases where not
only the sequence, but also the secondary structure can be modified to a certain
extent, a selection pressure to increase the number and length of linear motifs,
which in turn increase structural robustness, might appear. Eventually, the RNA
secondary structure of functional molecules should result from a combination of
different mechanisms, including how easily it is found (how large the corresponding
neutral network is [4] and how long it takes to find and fix a given structure [35]),
and what selection pressures act to keep functionality while minimizing the effect
of mutations on structure, among others.

An open question is whether the distribution of effects of mutations has a well-
defined functional form beyond AwL. Our study points out that this is not the case
for individual sequences, though a universal distribution might exist in a statistical
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sense. Future studies should address this point by averaging over the effects caused
by point mutations in independent sequences with the same value of AwL first,
and subsequently over sets of sequences folding into secondary structures of arbi-
trary shape and length. Preliminary results indicate that, with independence of
the universality of the distribution of effects of mutations in RNA sequences, that
distribution should have a fat tail as well, since changes of size ∆ � n are common
for random sequences.

Here, we have focused on the predicted minimum free energy secondary structure
of each sequence for simplicity and computational tractability, but RNA can also
fold into usually transient thermodynamically suboptimal structures. It is easily
conceivable that a given biological function associated with a sequence remains
active even if the structure is partially altered. Furthermore, a given sequence might
fold into alternative structures, each with a different function, as has been shown for
ribozymes [31]. As a case in point, the active structure of hammerhead ribozymes
does not coincide with the predicted minimum free energy structure [20]. If the
folding is rod-like, alternative structures are highly unlikely, whereas these can
be much more frequent in highly branched structures. Whereas our interpretation
is that the former are structurally more robust, we cannot discard that certain
biological functions can be performed by alternative RNA structures of the same
sequence, or even that structural plasticity is required for function. This type of
ambiguity appears when one tries to extrapolate the predicted RNA structures to a
given function or even to overall fitness. As such, our results should be interpreted
solely in the context of in silico predicted structures, regardless of whether these
structures match the ones found in vivo or whether they can be associated to specific
biological functions.

Despite the above limitation, the role of structural robustness in RNA sequence
evolution is supported by previous studies suggesting that viroids with branched
secondary structures (Avsunviroids) occupy a basal phylogenetic position compared
to those folding into more rod-like structures (Pospiviroids) [5, 29]. The observation
that some viroids show extremely high mutation rates and that most nucleotide
substitutions are significantly deleterious [10] increases the efficiency with which
selection can favor the evolution of neutrality and structural robustness. However,
it is obvious that selection can also operate independently of RNA secondary struc-
ture even in noncoding RNA. Indeed, a type of nonstructural selection is needed to
explain why the fitness effects of mutagenesis appear to be more severe in Pospivi-
roids than in Avsunviroids [2]. Again, factors other than thermodynamic stability
alone may shape a given RNA structure. For instance, double-stranded RNA trig-
gers post-transcriptional gene silencing and other responses leading to the degra-
dation or underexpression of the target RNA [39, 17]. Therefore, some sequences
might have evolved nonrod-like secondary structures to minimize RNA pairing and
thus avoid these responses. The extent to which selection for neutrality and selec-
tion for structural robustness is effective in face of other molecular functions and
the analysis of their interdependence is left for future studies.

1250052-14

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
30

.2
06

.9
2.

10
1 

on
 0

3/
07

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 2, 2013 16:35 WSPC/S0219-5259 169-ACS 1250052

Shape Matters: Effect of Point Mutations on RNA Secondary Structure

Acknowledgments

Support of Spanish Ministerio de Ciencia e Innovación through research projects
FIS2008-05273 and BFU2008-03978/BMC, through the Ramón y Cajal program,
and of Comunidad de Madrid (project MODELICO, S2009/ESP-1691) is gratefully
acknowledged.

References

[1] Barabási, A. L. and Albert, R., Emergence of scaling in random networks, Science
286 (1999) 509–512.
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