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Many quantitative properties of social systems display frequency distri-
butions with long power-law tails. This ubiquitous feature, known as
Zipf’s law, can be understood as a consequence of the stochastic mul-
tiplicative mechanisms that underlie the evolution of those systems. In
this contribution, several instances of Zipf’s law in social processes are
discussed. We review a class of models which have been put forward to
explain the occurrence of power-law distributions in a wide variety of
systems, ranging from word usage in languages to surname frequencies
in human populations.

1. Introduction

Biological populations, including those formed by human beings, are collec-

tively subject to a multitude of actions that shape their evolution and de-

termine their fate within the ecosystem to which they belong. These actions

may be of very disparate origins, but always involve a complex interplay

between factors endogenous to the population, and external mechanisms,

related to the interaction with other populations and with physical envi-

ronmental factors. The fluctuating nature of such actions, as well as the

diversity of their origin, call for a description based on stochastic processes.

1
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Within this kind of formulation, it is explicitly assumed that the parame-

ters that govern the evolution of the population can change with time in

irregular ways. For instance, the change in the number n(t) of individuals

within the population during a certain time interval ∆t can be modelled

by means of the discrete stochastic equation

n(t + ∆t) − n(t) = a(t)n(t) + f(t) (1)

where a(t) and f(t) are random variables with suitably chosen distribu-

tions. The equation may be solved for a specific realization of these random

variables but, usually, one is rather interested at finding the statistical prop-

erties of n(t) –for example, the expectation value of n at a time t in the

future– as a function of the statistical properties of a(t) and f(t). Equations

of the type of (1) have been studied in detail by several authors in various

contexts, as recently reviewed by Sornette.1,2

The two terms in the right-hand side of Eq. (1) have well-differentiated

interpretations. The first term, a(t)n, represents the contributions to the

evolution of n which are proportional to the population itself. Due to this

proportionality, such contributions are called multiplicative. In a closed pop-

ulation, multiplicative processes are restricted to birth and death, and a(t)

stands for the difference between the birth and death rates per individual

in the interval ∆t. In open populations, the number of individuals is also

affected by migration processes. In general, the contribution of emigration

is multiplicative-like, because each individual has a certain probability of

leaving the population per time unit. On the other hand, immigration has

both multiplicative and additive effects. Immigration flows can, in fact, be

favoured by a large preexisting population –as in big cities– but a portion

of arrivals may also occur as a consequence of individual decisions that do

not take into account how large the population is. Such additive contribu-

tion is accounted for by the second term in Eq. (1). This term can also

stand for negative effects on the population growth, such as catastrophic

events where a substantial part of the population dies irrespectively of the

value of n.3 More generally, the additive term f(t) describes “reinjection”

events, which insure that n remains finite even when multiplicative pro-

cesses by themselves may imply unbounded growth or eventual extinction

of the population.1

It can be readily shown that in the absence of reinjection, f(t) ≡ 0, and

under very general conditions on the statistical properties of the random

variable a(t), Eq. (1) implies that the probability distribution P (n, t) for

the population n at time t is a log-normal function. If, on the other hand,
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f(t) 6= 0, the distribution can have a complicated analytical form. It is

nevertheless known that, for large n and long times, P (n, t) depends on the

population as

P (n, t) ∼ n−1−γ . (2)

The exponent γ is determined by the equation 〈(a + 1)γ〉 = 1, where 〈·〉

indicates average over the distribution of the random variable a.1

Detecting the power-law distribution of Eq. (2) in real systems would

require to have access to many realizations of the evolution of the same

population –which, in practice, is rarely possible– or, alternatively, to fol-

low the parallel evolution of several populations of the same type. In this

second case, it would be necessary that all the populations under study are

subject to similar conditions, such as to insure that the parameters that

govern the evolution are uniform over the ensemble. These requirements are

often met in populations formed by human beings. Due to social, histor-

ical, geographical, cultural, and/or economic reasons, human populations

happen to be divided into groups of different types. Within each group,

all individuals share a distinctive trait, and the “affiliation rules” are such

that children belong to the same group as their parents. The creation of new

groups is usually rare, and migration between groups is relatively limited.

Consider, for instance, the case of surnames. In the overwhelming major-

ity of cases, they are transmitted unchanged from the father to his children.

Surname mutation is infrequent, as it is mostly associated with migration

to culturally distant populations. The voluntary change of an individual’s

surname is even rarer. As a result, human populations are divided into

groups where all individuals bear the same surname, and the population in

each group evolves almost autonomously. According to the above discus-

sion, it is expected that the distribution of the number of individuals in

such groups –given, for instance, by the probability of finding a surname

borne by n individuals– displays a power-law tail. In fact, it does, and the

same is true in groups such as the speakers of different languages, or the

inhabitants of different cities.

Over the past century, the occurrence of power laws in the population

distribution of human groups of various kinds has been reported by several

authors, notably, by the philologist G. K. Zipf.4 As a matter of fact, the

power-law dependence of the frequency of groups as a function of their

population came to be known as Zipf’s law. Remarkably, however, the only

case discussed in detail by Zipf does not involve the evolution of human

populations, but the apparently unrelated question of word usage in written
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and spoken language.5 With the illustration of statistical data obtained by

himself and others, Zipf pointed out that, in a text, the number P (n) of

words that are used exactly n times decreases with n as

P (n) ∼ n−ζ. (3)

Equivalently, the probability of finding a word with exactly n appearances

follows Eq. (2), with γ = ζ − 1. Zipf discovered that, for many texts in

different languages, one has ζ ≈ 2. In an alternative formulation –which

became famous as Zipf’s rank analysis– all the different words in a text

are ranked according to their number of appearances, with rank r = 1 for

the most frequent word, r = 2 for the second most frequent, and so on. It

can be shown that Eq. (3) implies, for the number of appearances n as a

function of the rank r, a power-law dependence

n(r) ∼ r−z , (4)

where z = (ζ − 1)−1 ≈ 1 is usually known as the Zipf exponent. The

same type of power-law dependence between frequency and rank is found

in surnames ranked by the number of individuals who bear them, languages

by the number of speakers, and cities by their population.

The aim of this contribution is to review a class of models that predict

the occurrence of Zipf’s law in human groups of various kinds. All of them

are extensions of Simon’s model,6 which is in turn based on a multiplica-

tive mechanism for the population growth. In the next section, we present

Simon’s model in the frame where it was originally introduced –word fre-

quency in language. The role of multiplicative mechanisms in language is

clarified, in connection with the process of context creation. We discuss

some refinements of the model, as well as its application to musical lan-

guage. Next, we describe how Simon’s model applies to the distribution of

city sizes and of speakers of different languages, pointing out some open

problems. Section 4 is the core of the contribution, and presents an exten-

sion of the model including mortality. This extension makes it possible to

give a detailed quantitative explanation of the distribution of surnames ob-

served in present-day populations, which may also apply to the distribution

of certain genetic traits. Finally, we give a concluding summary.

2. Models for Zipf’s law in language

A thorough formulation of a model for Zipf’s law was provided in the 1950s

by H. A. Simon,6 elaborating on an idea previously advanced by Willis
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and Yule.7 Simon presented his model by referring to the case of language,

which Zipf himself had discussed in detail in one of his books.5 Some spe-

cific features for Zipf’s law for language are the following. First, while the

exponent z of the power-law decay of the number of occurrences as a func-

tion of the rank r, Eq. (4), is generally close to unity, systematic deviations

are observed for texts in languages such as Latin and Russian, for which

z can be considerably smaller than one. Those languages share the prop-

erty of being highly inflected, due to the strong variation of both nouns

in declensions and verbs in conjugations. For other languages, in contrast,

z is larger than one. Second, at high ranks, the number of occurrences as

a function of r abandons its power-law dependence, and displays a faster

decay. These features are illustrated in Fig. 1.
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Fig. 1. Zipf’s rank plots for Virgil’s Aeneid, Don Quijote, by Miguel de Cervantes
Saavedra, and David Copperfield, by Charles Dickens. For clarity, the plots have been
mutually shifted in the vertical direction, so that the units for the number of occurrences
are arbitrary. Straight lines have the slope of least square fittings in the zone where the
power-law decay is well defined; labels indicate the slope value.

Simon’s model mimics the generation of a text as a stochastic process.

At each step, a word is added to the text, according to the following rules.

(i) With probability α, a new word –not yet present in the text– is added.

(ii) With the complementary probability 1 − α, an already used word is

added. In this case, the word to be added is chosen with a probability

proportional to its previous occurrences. Rule (i) implies that the lexicon

grows, on the average, at a constant rate as the text progresses. Rule (ii)

introduces a multiplicative mechanism that favours the occurrence of those
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words which are already frequently used in the text. In this formulation,

the only parameter of Simon’s model is α, the probability of appearance of

a new word.

The two rules defining Simon’s model can be translated into mathemat-

ical terms, in the form of an evolution equation for P (n, s), the number of

words that have occurred exactly n times up to step s. For n = 1, we have

P (1, s + 1) = P (1, s) + α −
1 − α

N(s)
P (1, s), (5)

while, for n > 1,

P (n, s + 1) = P (n, s) +
1 − α

N(s)
[(n − 1)P (n − 1, s) − nP (n, s)]. (6)

Here, N(s) is the total text length at step s. If the text generation is as-

sumed to have begun with one word at s = 0, we have N(s) = s + 1. The

above deterministic equations govern the mean evolution of P (n, s). Their

solution must be understood as the mean number of words with exactly n

occurrences, averaged over many realizations of the stochastic rules (i) and

(ii).

Simon himself proved that Eqs. (6) and (5) admit a solution which

decays with n as 6

P (n, s) ∼ N(s)n−1−1/(1−α). (7)

In the rank plot, this implies a power-law decay with exponent z = 1 − α.

He showed moreover that this special solution describes the asymptotic

distribution P (n) for any initial condition. Thus, a sufficiently long text

generated following the rules of Simon’s model verifies Zipf’s law with the

above exponent. Note that the exponent tends to the typical value z = 1

for a vanishingly small probability of appearance of new words. For finite

α, we have z < 1.

Simon’s model can be interpreted as an attempt to represent the cre-

ation of context as a text is generated. Context is the global property of

a structured message that sustains its coherence or, in other words, its

intelligibility.8 A long chain of words, even if they constitute a grammati-

cally correct text, would result incomprehensible if it does not succeed at

defining a contextual framework. It is in this framework, created by the

message itself, that its perceptual elements become integrated into a mean-

ingful coherent structure. As words are successively added to the text, a

context is created which favours the later appearance of certain words –in
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particular, those that have already appeared– and inhibits the use of oth-

ers. The model aims at capturing the essentials of the mechanism which,

by repeated use of certain words, is at work in the construction of a struc-

tured, comprehensible text. The repetition of perceptual elements is one of

the basic ingredients in the conception of intelligible structures and in the

ensuing cognitive response to their reception, including the creation and re-

trieval of memories.9 Such notion lies at the basis of the cognitive processes

associated with written and spoken communication.

Thus, Simon’s model interprets Zipf’s law as a statistical property of

word usage during the creation of context, as a text is progressively gen-

erated. Context emerges from the mutually interacting meanings of words,

and represents a collective expression of the semantic contents of the mes-

sage, arising from the multiple structured relations between language ele-

ments. Semantics is in fact essential to the function of language as a com-

munication system.

Incidentally, let us mention that B. Mandelbrot pointed out a differ-

ent –and, in a sense, simpler– mechanism able to give rise to a Zipf-like

law for written texts.10 He proposed to generate a “text” as an array of

characters chosen at random from a given alphabet, where the blank space

has also a certain fixed probability. “Words” are defined as the sub-arrays

between any two consecutive blank spaces. For sufficiently long “texts” of

this type, rank plots constructed by counting the number of occurrences

of each “word” show a power-law decay with an exponent close to z = 1,

as in real texts. If Mandelbrot’s explanation were right, Zipf’s law would

lack any linguistic significance. At the level of rank statistics, in fact, a text

would not be distinguishable from a random array of characters. Zipf’s law

should be thought of as a trivial manifestation of this “quasi-randomness”

of real texts. This observation gave origin to a lively discussion between

Mandelbrot and Simon themselves.11,12

Though, sometimes, Mandelbrot’s model is still invoked as an explana-

tion for Zipf’s law in language, a few important drawbacks strongly suggest

that such explanation is not correct. First, the exponent z predicted by

Mandelbrot’s model depends of the length of the involved alphabet.13 This

dependence of z on the alphabet length is not observed in real texts. Sec-

ond, Mandelbrot’s model implies a specific prediction for the distribution of

word lengths. If p0 is the probability of having a blank space, the probability

distribution for the word length l is the exponential p(l) = p0(1 − p0)
l−1.

This result, however, bears no relation to real word-length distributions.

In the first place, they usually show a maximum at small lengths. In the
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case of English, mainly due to the high frequency of the words THE and

AND, this maximum occurs at l = 3. Moreover, real distributions do not

decay exponentially. Language usage heavily penalizes very long words –

in English, beyond about l = 12. Consequently, the decay of word-length

distributions is usually faster than exponential. Finally, we mention that if

Mandelbrot’s model were correct, the number of different words of a given

length l should grow exponentially with l, which is also in disagreement

with data from real languages.

As discussed above, Simon’s model is able to explain Zipf’s exponents

lower than one, z < 1. However, rank plots for certain languages (such as

English and Spanish; see Fig. 1) typically exhibit exponents above unity.

To explain this discrepancy, Simon’s model can be refined on the basis of

linguistically sensible assumptions.14,15 In fact, probably the most unreal-

istic hypothesis in the model is the fact that the probability of appearance

of new words, α, does not vary as the text progresses. In real texts, this

is manifestly false. While during the first stages of the process new words

are frequently needed to settle the context, in later stages the lexicon be-

comes better established and, consequently, its growth rate is lower. A phe-

nomenological representation of this feature consists in assuming that the

probability of appearance of new words decays as α(s) = α0s
ν−1, with

0 < ν < 1, as the text is generated. This form for α(s) implies that the

lexicon size, i.e. the number of different words, increases as V (s) ∼ sν , while

the text length grows as T (s) ∼ s.

While, in general, it is not possible to solve Eqs. (5) and (6) for s-

dependent α, an approximate solution can be found, following the same

argument as Simon, if α(s) = α0s
ν−1 ≪ 1. Certainly, this inequality holds

at least when the initial stages in the text generation have elapsed. Under

these conditions, it has been shown that the number of words with exactly

n appearances decreases with n as P (n) ∼ n−1−ν . This implies

z =
1

ν
(8)

for the power-law exponent in the Zipf’s rank plot. Thus, within this exten-

sion of Simon’s model, exponents larger than one can also be reproduced.

Moreover, the result is in agreement with the empirical observation that

highly inflected languages (such as Latin) have Zipf exponents smaller than

those of less inflected languages (such as English). In fact, as for the number

of different words, poorly inflected languages have a more limited lexicon.

The vocabulary of texts written in such languages is therefore expected to

increase slowly as the text progresses, which corresponds to relatively small
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values of ν and, accordingly, large z.

A further extension of Simon’s model makes it possible to explain the

faster decay of the number of occurrences for high ranks. This extension is

also based on linguistic considerations regarding the creation of context as

a text is generated. It can be argued that a single appearance of a given

word is not enough to establish its role in defining the context. Rather,

there should be a threshold in the number of occurrences of a word, before

it enters the regime where the multiplicative process of Simon’s rule (ii)

acts. This effect can be implemented by modifying the probability that a

newly introduced word is used again. Namely, the probability that a word

with n previous occurrences appears at the current step is taken to be

proportional to max{n, η}, where η is the threshold. In this way, a given

word has to appear η times before the multiplicative process begins to act.

Until then, the probability of occurrence is constant. The threshold η may

be different for each word. Numerical simulations of the extended Simon’s

model with an exponential distribution for the value of η assigned to each

word are able to satisfactorily reproduce the observed decay for high ranks.

Within this extension, the fast-decaying tail of Zipf’s plot is interpreted as

containing those words whose number of occurrences has remained below

the corresponding threshold.

In view of the interpretation of Simon’s model as capturing the essential

mechanisms of the creation of linguistic context, it is natural to pose the

question as whether the same model can be applied to other communica-

tion systems with a meaningful notion of context. An appealing candidate

is music, which –supposedly– shares with language at least some neural

mechanisms related to acquisition and perception processes.16 The crucial

difference in nature between the information conveyed by music and lan-

guage, however, makes it difficult to extend linguistic concepts to the realm

of musical expression. Often, such extension remained at a metaphorical

level though, recently, scientifically sound definitions for musical syntax,

grammar, and semantics have been put forward. On the other hand, the

notion of context admits a straightforward extension to music. Musical

context is determined by a hierarchy of intermingled patterns occurring at

different time scales. The tonal and rhythmic structure of melody motifs

constitutes the most evident contribution to musical context. The repeti-

tions, variations, and transpositions of those motifs shape the thematic base

of a composition. At larger scales, the recurrence of long sections and cer-

tain standard harmonic progressions determine the musical form. Crossed

references between different movements or numbers of a given work estab-
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lish patterns over even longer times. Meanwhile, at the opposite end of

time scales, the duration and pitch relation of a few notes are enough to

determine tempo, rhythmic background, and tonality.

Applying Zipf’s analysis to music requires first to solve the task of giving

a convincing definition to the musical equivalent of “word.” The multiplicity

of levels at which musical context can be defined suggests several possible

identifications for “words” in music, ranging from single notes to rhyth-

mic patterns, to melodic phrases. Many of them have in fact been used to

construct Zipf’s rank plots for musical compositions. Unfortunately, such

studies did not go beyond a phenomenological description, and established

no connection with possible models for Zipf’s law.17,18
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Fig. 2. Zipf’s rank plots for the Prelude N. 6 in d from the second book of Das Wohltem-
perierte Klavier, by J. S. Bach, and the second movement, Menuet, from the Suite
Bergamasque by C. Debussy. Curves correspond to least-square fittings with Eq. (9).
The resulting exponent is ν = 0.28 for Bach and ν = 0.48 for Debussy.

More recently, however, the significance of Simon’s model in music

has been assessed on the basis of Zipf’s analysis for a set of classical

compositions.19 Due to operational convenience, “words” were identified

with single notes, defined by their individual pitch and duration. The con-

tribution of notes to the creation of musical context, determining tonality

and rhythm through they relative pitches and lengths, is particularly trans-

parent. Figure 2 shows Zipf’s plots for two compositions for keyboard: the

Prelude N. 6 in d from the second book of Das Wohltemperierte Klavier, by

J. S. Bach, and the second movement, Menuet, from the Suite Bergamasque

by C. Debussy. Note that these plots lack the power-law high-rank regime

of Zipf’s plots for language (Fig. 1). This feature, which can be ascribed



July 5, 2006 13:23 WSPC/Trim Size: 9in x 6in for Review Volume mzr

Multiplicative Processes in Social Systems 11

to the relative small “lexicon” size (number of different notes) and “text”

length (total number of notes) of musical compositions as compared with

language corpora, does not preclude, however, the application of Simon’s

model. In fact, imposing to Simon’s model the additional condition that

any given “word” can appear at most a predefined number of times, the

functional form of the number of occurrences n in terms of the rank r is

n(r) = (a + br)−1/ν . (9)

Here, a and b are constants, and ν is the exponent that defined the “lexicon”

growth, V ∼ sν , as discussed above. Least-square fittings of Zipf’s plots

with Eq. (9) are in excellent agreement with empirical data, supporting the

applicability of Simon’s model, as a representation of context creation, to

musical compositions. The difference in the values of the exponent ν for

Bach (ν = 0.28) and Debussy (ν = 0.48) is not unexpected. The exponent

becomes even larger for atonal compositions, where the use of elements

that determine the tonality context is avoided on purpose. As discussed

in the case of language, small exponents correspond to a compact lexicon,

determining a rather robust, stable context. Large exponents, on the other

hand, determine an abundant lexicon, related to a ductile, more tenuously

defined context. The merest comparison of the above compositions clearly

reveals this difference to the listener.

3. City sizes and the distribution of languages

Before moving to the core of this contribution, we briefly review in this sec-

tion two instances of occurrence of Zipf’s law in direct relation to human

populations. As discussed in the introduction, the nature of the reproduc-

tion mechanism of living organisms implies that the overall evolution of any

biological population is inherently driven by stochastic multiplicative pro-

cesses. In the two instances considered here, these processes are reflected in

the size distribution of human groups, as their population grows.

Our first instance regards the distribution of city sizes. It is an evi-

dent fact that the geographical, political, and socioeconomic factors that

determine the sizes of cities, as measured by their populations, are broadly

heterogeneous. Accordingly, changes in city populations are quite disparate,

even for closely related cities. Think of the fate of a few Western urban set-

tlements during the last five hundred to one thousand years. Venice, for

instance, which in the Middle Ages was one of the largest cities in Europe,

bears now some 60, 000 inhabitants –approximately, half of its population
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three centuries ago. In the same period, Rome multiplied its population by

a factor of 100, reaching its present few millions. By the beginning of the

thirteenth century, Paris and Florence had approximately equal sizes; now,

the former is some 20 times bigger than the latter. As for the cities of the

New World, initially modest and precarious settlements such as México, São

Paulo, Buenos Aires, and New York have become, in five hundred years,

some of the largest metropolitan areas in the globe.

Yet, a rank plot of populations for all the cities in the world shows a

well-defined power-law regime over several orders of magnitude, revealing

an unexpected regularity in the result of the very non-uniform process of

urban growth. And, perhaps more surprisingly, Zipf’s law occurs also when

the sample is limited to the cities of a given country or region. This is one

of the best known occurrences of Zipf’s law; it was already quoted by Zipf

and Simon themselves. Figure 3 displays rank plots for the largest urban

settlements in India, Argentina and France, including some 200 cities each.

Data have been obtained from www.citypopulation.de, and correspond to

2001 for India and Argentina, and to 2004 for France.
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Fig. 3. Zipf’s rank plots for the population of the largest cities in India (2001), Ar-
gentina (2001), an France (2004). Some 200 cities are considered in each case. Data for
France have been multiplied by 0.1, for clarity in the display. Straight lines stand for
least square fittings. The corresponding Zipf’s exponents are shown as labels. Source:
www.citypopulation.de.

Such ubiquitous regularity calls for an explanation based on universal

mechanisms and, of course, it is natural to think of the multiplicative pro-

cesses that govern the evolution of populations. Larger cities grow faster,
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first, due to the reproduction of its inhabitants. But also the effect of immi-

gration, which cannot be neglected in the change of city sizes, is expected

to be multiplicative in nature. The accumulation of wealth and resources in

a given city should be proportional to its size, at least within geopolitically

uniform regions. Consequently, its appeal to immigration should increase

as its population grows. The basic mechanism of rule (ii) in Simon’s model

is thus at work. Each time a new inhabitant is added to the system, their

destination city is chosen with a probability proportional to its current

population. Rule (i) requires, in addition, to have a finite probability of

foundation of a new city when the new inhabitant appears. In practice,

such probability must be extremely small.

For city sizes, the variation of the Zipf exponent z between countries

is more restricted than in the case of word frequencies between different

languages. In the former case, Zipf exponents are rarely below 0.9 or above

1.1. A regularity has however been reported in the variation of z: the Zipf

exponent is systematically smaller for old countries (as, for instance, in

Europe and Asia) than for young countries (as in the Americas). Figure 3

illustrates this fact. Exponents larger than one –such as that of Argentina,

z = 1.06– can be readily explained using the extension of Simon’s model

discussed in the previous section, which admits that the probability of cre-

ation of new cities decreases as time elapses. On the other hand, while the

original form of Simon’s model could explain an exponent lower than one

–such as that of India, z = 0.91– it would require a very large value of the

probability α. In the case of India, we would have α = 1 − z = 0.09, which

would imply that, roughly, a new city is created every ten new inhabitants

in the country! Clearly, another mechanism is needed to explain such small

exponents as that of India. Geographers suggest that an important ingre-

dient may be given by the fact that the growth rate of an existing city is

not necessarily proportional to its current size, as assumed in rule (ii) of

Simon’s model. In particular, a dependence on the size that penalizes large

populations would produce an overall flattening of the rank plot, with the

ensuing decrease of z. To our knowledge, the extension of Simon’s model

with size-dependent growth rates has not been studied yet.

The application of Zipf’s analysis and Simon’s model to urban settle-

ments is implicitly assuming that individual cities are well-defined entities.

Actually, urbanists may not agree on this point. The modern city is such

a complex of intermingled systems that it defies a definition in terms of

traditional classification schemes, and requires a wider concept of class.20

Figure 4 illustrates the fact that, while urban settlements can be distinctly
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Fig. 4. Two satellite images of the Earth by night. Left: Central Ukraine. Right: North-
western Germany. Each image covers an area of, roughly, 500 × 500 km2. Source: visi-
bleearth.nasa.gov.

identified in some regions, in other places the situation is much less clear

cut. Currently, it is accepted that –at the level of big cities– the entities to

be considered in Zipf’s analysis are the clusters resulting from the growth

and aggregation of initially separated settlements. Administrative divisions,

usually inherited from those initial conditions, do not play a substantial role

in defining such metropolitan areas. Figure 3 was drawn taking this crite-

rion into account. This discussion rises the question on the origin of Zipf’s

law for urban agglomerations. It would be interesting to consider an ex-

tension of Simon’s model incorporating the formation of aggregates, and

determine which features in the aggregation mechanism insure that Zipf’s

law holds for the resulting system of cities and urban clusters.

The second instance of Zipf’s law considered in this section regards the

number of speakers of different human languages. At the present day, some

5, 000 to 6, 000 different languages are spoken all over the world. Their

distribution and diversity, which have been determined by both historical

and geographical factors, are extremely heterogeneous. For instance, about

1, 000 different languages –all of them belonging to the Indo-Pacific family–

are spoken in New Guinea and neighbouring islands while, in turn, practi-

cally all the American countries to the south of the United States (Brazil

being the most noticeable exception) have Spanish as their main mother

language. The number of Native American languages, on the other hand,

had certainly reached several hundreds before the European invasion in the

sixteenth century.21 In correspondence with this heterogeneity, the number

of speakers per language varies between several hundred millions for Chi-

nese and some languages of the Indo-European family, to a mere handful

of speakers for those hundreds of languages that are presently on the edge
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of extinction.

Notice that the same warning put forward above on the entity of cities

applies to languages. Usually, a language is accompanied by a host of re-

gional variations, dialects, and jargons, that make it difficult to give a neat

definition of geographical boundaries and historical domains. Nevertheless,

linguists seem to have reached a reasonably general agreement on the entity

of a large number of languages, and the size of the respective populations

has been determined. Figure 5 shows a rank plot of the first 1, 000 languages

ordered according to the corresponding number of speakers. The plot be-

gins with a zone where the Zipf exponent is close to unity. Soon, however,

the exponent changes to a much higher value, z ≈ 1.8. This is, in fact, the

highest Zipf exponent among the several instances discussed in this article.
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Fig. 5. Zipf’s rank plot for the number of speakers per language, for languages with
more than ∼ 105 speakers. Source: www.etnologue.org.

The occurrence of Zipf’s law for the number of speakers per language

can be readily understood in terms of the multiplicative mechanisms that

underly the growth of the respective populations. In this process, it is es-

sential that –in the overwhelming majority of cases– an individual inherits

the language of their parents, so that they belong to the same speaker pop-

ulation. The situation is similar to that of family names, that we discuss in

detail in next section. The probability of creation of new languages should

be very small. In the frame of Simon’s model, a Zipf’s exponent z ≈ 1.8 can

be explained by means of the extension discussed in the previous section,

with a decreasing frequency of language creation. According to Eq. (8), the

corresponding exponent would be ν ≈ 0.56.
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The presence of a power-law regime with a different Zipf exponent for

the languages with the largest numbers of speakers –some 20 languages spo-

ken by, roughly, more than 50, 000, 000 people– is intriguing.22 However, the

populations associated with most of these languages have evolved in the last

few centuries through mechanisms that may not be well described by the

local multiplicative processes of Simon’s model and its variations.23 The rel-

atively rapid expansion of these languages over vast geographical domains,

through invasion –pacific or violent–, conquest, and massive migration, may

imply that the spatial variable cannot be ignored in a description of their

evolution. The already mentioned case of Spanish is a clear example: some

90 % of the present-day Spanish speaking population was not born in Spain,

and much of it is ethnically non-European. A case not related to classical

colonialism is that of Turkish: it is spoken by more than 60 million people,

one third of them outside Turkey. The quantitative modelling of the distri-

bution of these geographically very extended languages is an open problem.

4. Family names

It belongs to common experience that the pedigree of an individual can be

traced back for many generations, often following the line that links fathers

to sons. The frequency of surnames is one of the clearest cases of multi-

plicative growth of a cultural feature, and has been studied using different

approximations for at least one century. The similarity of this problem with

some questions put forward in the field of population genetics has favored

that, nowadays, we enjoy a deep understanding of the main mechanisms at

play. In this section, we briefly review the historical development of prob-

lems related to surname inheritance and the models proposed to explain its

dynamics, and analyze the sociological and historical context of a number

of present-day populations.

The end of the nineteenth century witnessed the first attempt to formu-

late and solve a sociological problem mathematically. The problem arose

when it was noted that certain families “of men of genius” tended to perish,

as the disappearance of certain surnames seemed to indicate. The problem

was qualitatively addressed by Sir Francis Galton, who at the time gave an

explanation based on his belief that a rise in intellectual capacity somehow

implied a diminution in fertility. A contrasting point of view was that of

Alphonse de Candolle, who pointed out that the unavoidable fate of a sur-

name is to disappear simply due to the stochastic nature of the inheritance

process. The mathematical formulation of the problem, and a first solution,
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came from the study of Rev. H. W. Watson, who correctly concluded that

any surname is bound to disappear in constant or shrinking populations,

without the need to invoke differential fertility of the individuals.24

It took several decades to relate the problem of family name inheritance

to the genealogy of non-recombining alleles (or of genetic heterogeneity) in

a population.25 Some parts of the human genome, among them the Y chro-

mosome and the mitochondrial DNA, are inherited from one of the parents

only, and do not experience recombination in the process. Hence, they are

transferred unaltered, except for rare mutations, from generation to gener-

ation. The dynamics of this process correspond to a monoparental way of

transmission affected by population fluctuations, and is completely analo-

gous to surname inheritance. The correlation between the two processes is

strong enough that, occasionally, the surname of certain patrilineal families

clearly correlates with the inherited characteristics of the Y chromosome.26

Regarding the disappearance of surnames, the interest was initially di-

rected to estimate the probability that a surname perished as a result of the

randomness inherent to the transmission process. To solve that problem, a

formulation fully analogous to the fixation of a mutant allele in a population

was proposed.27 The first statistical approaches to the description of sur-

name abundance 28 came much later, and took advantage of neutral models

initially devised to quantify the number of different alleles that could be

maintained in a population.29

In the framework of those stochastic models, the trait under consider-

ation evolves neutrally, that is, it does not confer any selective advantage

to the individual carrying it. While this statement is difficult to prove in a

genetic context, it is much more easily verified in the case of family names.

This approach yields a number of exact results, including the probability

for a trait to survive at any time in the future and the average number of

different traits that can stably coexist in a large population. In particular,

for a population to be heterogeneous with respect to a certain trait, a suf-

ficiently high rate of appearance of new variants is required.30 Consider a

population of constant size evolving by non-overlapping generations, and

initially homogeneous with respect to a certain character. Suppose that a

mutant appears. Neutral theory states that the typical number of genera-

tions g for the mutant to be fixed under the action of random drift is of

the order of the size N of the population, g ∼ N . If the rate of appearance

of mutants is r per generation, then rgN mutants appear in g generations.

Hence, only when r ≪ N−2 is the population homogeneous with respect to

that character. For larger values of the mutation rate a number of different
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haplotypes (or of different surnames) coexist at the statistically stationary

state. In the case of exponentially growing populations, the composition of

the population crosses over from homogeneity to heterogeneity when the

number of individuals becomes large enough, and if growth continues the

number of coexisting variants keeps increasing. In the case that will be tack-

led in this section –the abundance of families of a certain size– the mutation

rate is high enough that all the societies studied maintain high degrees of

heterogeneity.

The inheritance of surnames or of non-recombining alleles is character-

ized by three main mechanisms involved in the transmission process from

one of the parents to the offspring: (i) the probability that a newborn inher-

its a certain surname or gene is proportional to the number of individuals

in the population bearing it; (ii) the surname (or form of the gene) remains

unchanged in most cases, though with a small probability α the surname

changes or the gene mutates, and a different group, initially constituted by

a single individual, appears; (iii) individuals carrying that surname (or al-

lele) can die at any time with a given probability. Associating an evolution

step with the appearance of a newborn in the population, rules (i) and (ii)

correspond, respectively, to rules (ii) and (i) in the formulation of Simon’s

model for Zipf’s law in language, as presented in Sect. 2. In addition to

mutations, rule (ii) also takes into account migration of individuals to the

population. The third rule introduces a new mechanism –mortality– essen-

tial to the problem that we are now dealing with: surnames or alleles can

disappear whenever they are carried by a single individual, if that individ-

ual dies. We call µ the probability that a single individual dies per evolution

step. The model described by rules (i), (ii), and (iii) corresponds to an ex-

ponentially growing population for any µ < 1. In that scenario, it can be

shown that, similarly to the asymptotic behaviour described for Simon’s

model, the system eventually attains a statistically stationary state where

the distribution of family sizes reaches a fixed profile. This distribution will

be broad whenever α is large enough.

The analysis of real data for family abundance in different societies re-

veals remarkable quantitative differences. For example, there are broadly

different degrees of heterogeneity regarding surname distribution. The data

shown in Fig. 6 imply that there are about 50 different surnames in the

USA for each surname in China. Though the transmission process is the

same in both cases, each of them should be described by very different val-

ues of the relevant parameters. Indeed, actual values of α depend on the

accuracy of transmission of surnames and on immigration flows. Changes
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of country, of writing system, spelling errors and, in some cases, volun-

tary changes, together with the appearance of new surnames due to the

arrival of foreign families, might translate into very different values for α

in different societies. The parameter µ determines the growth rate of the

population, and can be highly variable in time. Finally, the distance to

the asymptotic form of the distribution depends on the initial condition

(number and size of the founding families), and on the genealogical depth

of a population, that is, on the time since surnames started to be system-

atically used as cultural and sociological markers. Thus, real data indicate

that countries with different surname distributions differ at least in one

of the following conditions: either their values for the parameter α or for

the growth rate µ are different, or they are still at the transient phase

and have not reached stationarity. This nonetheless, the deep relationship

between non-recombining alleles and surname inheritance has made of sur-

name distributions a powerful tool to quantify the genetic heterogeneity of

a population, the amount of inbreeding, and the historical degree of mixing

in some human communities.31

In China, the tradition of using surnames dates back at least to about

2200 B.C. Nowadays, the Chinese society has little diversity regarding

surnames, partly due to its genealogical depth, which spans 160 to 200

generations.32 However, there is probably a second reason explaining why

almost 90% of Chinese people share only 100 different surnames: the writ-

ing system. Most surnames in China correspond to a well-defined concept,

which is represented using a symbol common to most languages and di-

alects spoken in the country. Mutation thus becomes extremely rare, and

the value of α is consequently low, favouring in this way the fixation of a

given surname in a large fraction of the population. For example, the sur-

name “King” or “Royal” (often transcribed as Huang), which ranks fifth

in abundance, is pronounced Wang2 a in Mandarin, Heng in Teochew, and

Wong in Cantonese. When people of Chinese origin bearing that surname

move to countries using phonetic writing systems, many different transcrip-

tions might arise, such that at present surnames as Huang, Henk, Hank,

Wenk or Wank also exist in the USA, though they probably stem from a

single original ideogram. Interestingly, the study of large isonymous groups

in China 33 demonstrated that the Y chromosome displays multiple haplo-

types within that population. This was interpreted as polyphyletism in the

surname, meaning that the population under study originated from differ-

aThe number refers to the tonal form of the word.
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ent unrelated founders bearing the same surname. However, an alternative

explanation could be that the mutation rate of the Y chromosome is larger

than that of surnames, such that changes in the two markers are different

enough and the correlation between them decays with time.

Surnames in Europe began to be used in the Middle Ages, meaning that

this society has a genealogical depth of 20 to 30 generations. Taking into

account the writing system, the values of α are predictably much higher

than in the Chinese case. Indeed, there are many surnames that differ just

in one or two characters (changes in one letter, including insertions and

deletions), and some of them constitute closely related groups. For example,

the surnames Kemmingway and Hemaway can be “linked” through a chain

of surnames, all of them in use nowadays, that differ in just one character:

Hemmingway, Hemingway, Heminway, Hemenway, and Hemanway.34 While

some centuries ago the European population experienced a fast growth

(implying a low value of µ), at present it has reached a close-to-stationary

value, such that µ ≃ 1. Changes in growth rates, and in particular the

limit case µ = 1, can cause qualitative changes in the expected distribution

of surname abundance, as shown below. An interesting case in Europe is

that of Sweden. Prior to 1862 it was not permitted that common people

retained family names, such that the surname changed at each generation,

and the old family name disappeared.35 Moreover, the way of construction

of most surnames added the suffix “son” (“daughter”) to the given name of

a boy’s (girl’s) father (mother). Due to this procedure, Swedish surnames

are highly polyphyletic. Hence, the use of family names as genetic markers

is those populations is not feasible.

Japan has a genealogical depth comparable to that of Sweden, since

surnames have been systematically used only during the last 120 years.36

Though the mutation rate in the Japanese system is probably quantita-

tively similar to the Chinese case –at least as far as the writing system is

concerned– its youth still maintains a relatively high diversity at present.

Another interesting case is that of American countries which grew fast in

population and whose founders were a mixture of European immigrants.

Such is the case of Argentina 37 and the USA, where the actual distribu-

tion of surnames had as initial condition a relatively large population with

high heterogeneity and a few individuals per surname.

Figure 6 shows rank plots for surname abundance in two of the cases

discussed. The influence of the genealogical depth, and the low value of α in

the Chinese case are particularly visible. Summarizing, we can conclude that

different historical contexts, the time at which surnames appeared, and the



July 5, 2006 13:23 WSPC/Trim Size: 9in x 6in for Review Volume mzr

Multiplicative Processes in Social Systems 21

1 10 100 1000
10

-5

10
-4

10
-3

10
-2

10
-1

 China 

 USA 

 

fr
eq
u
en
cy
 

rank

Fig. 6. Zipf’s rank plots for surname abundance in some representative societies.
Data are from http://technology.chtsai.org/namefreq/ (China), http://www.census.gov/
(USA). While the three most common Chinese surnames (Li, Wang, and Zhang) are
borne by almost 10% of the population each, the most common surname in the USA
(Smith) is borne by only 1% of the population.

accuracy to which they are transmitted from generation to generation are

three factors reflected on the shape of the surname abundance distribution

at present.

4.1. The effects of mortality

The introduction of the parameter µ in Simon’s model is necessary in order

to consider the death of individuals in the population, which is the only

mechanism leading to the eventual disappearance of surnames. In addition,

mortality has immediate consequences in other quantities describing popu-

lation dynamics. First, the average growth of the population is exponential

in time for µ < 1,

N(t) = N0 exp[ν(1 − µ)t], (10)

with ν standing for the birth rate per individual and unit time, and the

product µν yielding the corresponding death rate.b The quantity N0 is the

size of the initial population. In principle, the N0 initial individuals can be

bThe relation between the step variable s, which gives the total number of individuals

added to the population, and the real time t comes from noticing that the birth frequency
is proportional to the total population, such that the elementary increment in time δt is
inversely proportional to N(t), δt(s) = (νN(s))−1. The frequency ν fixes time units.
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distributed among a number of families of different sizes. The initial condi-

tion becomes fully specified once the number of surnames initially borne by

exactly n individuals, P (n, 0), is known. Polyphyletism corresponds to a sit-

uation where P (n, 0) ≥ 1 for at least one value of n > 1. The opposite case,

where P (n, 0) = 0 for all n > 1, is to be associated with monophyletism.

Note that N0 =
∑

n nP (n, 0).

The second consequence of mortality is that individuals have a life ex-

pectancy 1/νµ. During their lifetime, the probability to have m children

who inherit their parent’s surname turns out to be an exponential distri-

bution of the form

p(m) = (1 − α)µ[1 + (1 − α)µ]−m−1. (11)

Though it is usually assumed that the distribution of offspring is Poisson-

like, data collected over short periods of time yield distribution of offspring

close to exponential,38 thus supporting the use of this model at least in

appropriate social contexts.

The third consequence of mortality is that the total number of different

surnames in a population might decrease. This situation holds, for instance,

when the diversity is high and µ changes from small values to values close

to one. This represents a situation where the exponential growth stops and

the size of a population keeps approximately constant. This is frequent in

developed societies, as in Europe nowadays, where the fast growth experi-

enced in the last two centuries has come to a halt.

For µ = 0 the dynamical equations describing the process are (5) and

(6), which are completed with an initial condition specifying in this case

number and size of the founding families. When mortality is turned on, the

update of the population has to be modified in order to include death events.

To this end, it is useful to split the dynamics into two sub-steps, as follows.

Equations (5) and (6) are used to yield intermediate values P ′(1, s+1) and

P ′(n, s + 1), and the total population becomes N ′(s + 1) = N(s) + 1 at

the first sub-step. The effect of mortality can be accounted for immediately

after growth and mutation are applied, such that the final value for the

total population once the update is completed reads

N(s + 1) = N ′(s + 1) − w(s), (12)

with w(s) representing a stochastic dichotomic process that takes the value

1 with probability µ and 0 with probability 1− µ. The corresponding evo-
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lution equation for the abundance of families of size n is

P (n, s + 1) = P ′(n, s + 1) (13)

+

[

w(s)

N ′(s + 1)

]

[(n + 1)P ′(n + 1, s + 1) − nP ′(n, s + 1)] ,

where the bar indicates average over different realizations of the stochastic

process. This dynamical equation cannot be solved exactly, though some

reasonable assumptions make it possible to obtain approximate solutions.

Assuming that the solution varies slowly with n and s, a continuous ap-

proximation becomes feasible, where the family size n and the step index s

are replaced by continuous variables y and z, respectively.37

A relevant problem when analyzing real data for surname abundance

is the typical time required to develop the asymptotic form of the solution

in a reasonable range of family sizes, and starting with arbitrary initial

conditions.39 Considering that the use of surnames is relatively recent in

history, it is important to estimate whether present day societies would be

close enough to the asymptotic regime, and thus whether the model can

be applied to real situations. A quantitative answer to this question can

be obtained by solving the model for surname dynamics using a first-order

expansion in the continuous variables y and z. In this approximation, the

solution consists of two parts. For y < yD(z),

P (y, z) = α
N0 + (1 − µ)z

1 − α − µ
y−ζ (14)

with

ζ = 1 +
1 − µ

1 − α − µ
. (15)

For y > yD(z),

P (y, z) = y−1
D P (y/yD(z), 0). (16)

The family size yD(z) that separates the two parts of the solution grows as

time elapses,

yD(z) =

(

1 +
1 − µ

N0
z

)1/(ζ−1)

, (17)

and is directly related to the genealogical depth of the population. As a

function of real time, yD(t) = exp[ν(1 − α − µ)t]. This means that the

transient time t0 needed to observe the asymptotic regime (dominated by

a power-law with exponent ζ) in the family size distribution is logarithmic
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in the family size, t0 ∝ ln y0. This explains why many real distributions

of surname abundance are well described by the asymptotic solution in a

broad range of values, even if the genealogical depth of most systems seems

relatively small.

A more accurate solution to the problem with mortality is obtained by

using a second-order expansion of Eq. (13). It reads

P (y, z) =
αN(z)

1 − α − µ

(

2
1 − α − µ

1 − α + µ

)ζ−1

y−1U

(

ζ − 1, 0, 2
1 − α − µ

1 − α + µ
y

)

,

(18)

where U(a, b, x) is the logarithmic Kummer’s function.40 For large family

sizes, y → ∞, this solution again predicts a power-law behavior of the form

n(y, z) ∝ y−ζ . The exponent ζ, defined in Eq. (15), presents two relevant

limits. First, for µ = 0 the known solution for Simon’s model, Eq. (7), is

recovered. Second, the limit α → 0 always converges to ζ = 2, irrespectively

of the value of µ. For small family sizes, Eq. (18) yields a probability lower

than in the case µ = 0. This downward bending of the distribution of

surname abundance at small sizes is in agreement with field data. Figure 7

represents several sets of data and the corresponding fits obtained from

Eq. (18).

A similar continuous approximation to calculate frequency distributions

in processes with birth, death, and mutation, yields a solution for this

problem equivalent to Eq. (18).41 When that solution was used to fit the

distribution of surnames in several European countries and in the USA,

a good agreement between data and theoretical prediction was obtained.

This reinforces the idea that the genealogical depth of those relatively young

systems suffices to be close enough to the asymptotic, power-law regime.

The case µ = 1 deserves some separate comments, since in this limit

the qualitative properties of the system change. This situation corresponds

to populations that are stationary in size N(s) = N0, where the number of

births equals the number of deaths. This model was used in the context of

genetic inheritance to study the probability of fixation of alleles:42 Moran’s

model is analogous to Simon’s model in populations of constant size. Even-

tually, the diversity supported by a population of constant size will reach

a constant value, though the transient until this regime sets in depends, as

it does for µ < 1, on the initial condition. Further, it turns out that, for

constant populations, the functional form of the surname abundance dis-

tribution changes with the actual values of the parameters: the solution to

the dynamical equations depends on how the product αN0 compares with
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Fig. 7. Frequency of appearance of families with a given size. Data for Argentina cor-
respond to almost 350,000 surnames in the whole 1996 Argentinian telephone book; for
Berlin, 6400 surnames beginning by A in the 1996 telephone book have been used; data
for Japan are adapted from Miyazima et al. (2000).

unity. If mutation is frequent enough such that αN0 > 1, the asymptotic

distribution of family sizes is exponential,

P (n) ≃
αN0

n
(1 − α)n−1 for αN0 > 1, (19)

and the stationary number S of different surnames is

S ≃
αN0

1 − α
| lnα|. (20)

If, on the other hand, mutation is rare enough to yield αN0 < 1, the

distribution behaves as a power-law,

P (n) ≃ n−1 for αN0 < 1. (21)

In those cases where mutation is rare enough, in the limit α → 0, the

population becomes homogeneous (there is a single family, S = 1) and the

distribution consists of a single peak at n = N0.

This could in principle be the fate of conservative societies where in-

heritance is very accurate and the appearance of new surnames is strongly

suppressed. However, the limit situation where surname diversity disap-

pears lacks any cultural meaning, since the value that an individual assigns
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to his family name progressively fades out as the society becomes more

homogeneous.

4.2. The distribution of given names

A person’s full name identifies the individual and is frequently carried with

pride. The low variability of surnames in certain societies can be balanced

by a higher diversity in given names, such that the number of full names in

use is large enough to be rarely repeated within a population. We conclude

this section with a brief review of the distribution of given names.

One of the consequences of the very low surname diversity in the Chi-

nese society may be that the family name is no longer a strong sign of

individuality, but of a very large community of individuals among which

close contacts do not always exist. This is probably one of the reasons that

Chinese given names are extremely diverse and often complex in meaning:

they add singularity to the individual and help distinguishing him within a

large population isonymous with respect to the surname. The distribution

of given names in different cultures seems to bear an inverse relationship

with the distribution of family names. With the evidence at hand, one

could argue that the full name arises from a compromise between “being

different” and “belonging to a community.”

Figure 8 represents Zipf’s rank plots for given names abundance in

China and USA. Those data correspond exactly to the same samples rep-

resented in Fig. 6, there ranked by surname abundance. In these two rep-

resentative cases, it is interesting to note that the combinatorial variability

of full names, defined as the product between the number of different sur-

names and the number of different given names, return similar quantities.

In China, the number of surnames in use is of order 102, while the amount

of different given names rises to 105; in the USA, 103 different surnames

can combine with 104 different given names. Hence, in both societies the

number of different full names is of order 107.

In societies where many common surnames occur, and where given

names are also subject to tradition –such that their variability is lower

than, for instance, in the Chinese case– it seems that other cultural mech-

anisms might act in order to increase the singularity of the full name for

each individual. Such mechanisms could be the use of middle names, or the

inclusion of the mother’s surname after the father’s one, as is done in Spain

and several Latin American countries.

Finally, let us remark the qualitative similarity between the distribu-
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Fig. 8. Zipf’s rank plots for given name abundance in two societies. Data are from
http://technology.chtsai.org/namefreq/ (China) and http://www.census.gov/ (USA).
Compare these distributions with those of surnames in the same populations (Fig. 6).
Most common given names in USA (Mary and James rank 1, Patricia and John rank 2
for females and males, respectively) are carried by 2-3% of the population. In China, the
most common given name is only shared by three people out of a thousand.

tions shown in Fig. 8 and those corresponding to surname abundance. Al-

though the dynamics followed by the abundance in time of a given name

does not precisely conform to the inheritance model followed by surnames,

the distribution has characteristics that point to a broader applicability of

multiplicative models in sociology. We believe that the main mechanisms

shaping the distribution of given names might follow dynamics closely re-

lated to those of fashion, which, in a broad sense, underlies many of our

daily habits and preferences.

5. Conclusion

The dynamics of several of the cultural features discussed in this review

are clearly dominated by a hereditary component. Languages and surnames

are mostly passed unchanged from one generation to the next, such that

their transmission is in the vertical direction. This fully justifies the use

of stochastic multiplicative models to analyze their statistical properties. It

could be argued that other systems, as cities, are not so clearly described by

a multiplicative model, though it is reasonable to assume that city growth

is dominated by reproduction of its inhabitants and the arrival of new indi-

viduals, this last process having a strong multiplicative component as well.

The situation is less clear for the last example discussed: the distribution
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of given names.

Cultural features are often determined by the sociological pressure ex-

erted by groups of akins. The hobbies, religious beliefs, TV programs

watched, or books read by an individual, are not independent of the major-

ity preferences within his or her social group. It is arguable that, the larger

the group sharing a given characteristic, the higher the probability that a

new individual acquires that characteristic. This dynamics is intrinsically

multiplicative, and though the form of transmission of the considered fea-

ture is horizontal in this framework –thus not inherited from one generation

to the next– it suggests that coarse-grained multiplicative models where the

relevant variable is the size of groups might be of general application in so-

ciological problems. This calls for extensions of the models discussed in this

contribution, for instance by adding horizontal flows between groups pro-

portional to their sizes, superimposed to pure vertical transmission. Other

modifications might include size-dependent growth rates, for instance in

the form of higher-order terms in the dynamical equations. The splitting

of very large groups or the merging of small ones, as often observed in real

societies, would be worth considering as well.

The quantitative analysis of cultural evolution through phylogenetic

methods is an increasingly used approach in the sociological community.

Vertical transmission of cultural characters, including in particular lan-

guages, seems to be much more determinant in shaping the evolution and

distribution of cultural groups than horizontal transmission. Nonetheless,

this is a changing paradigm since, until the second half of the twentieth

century, blending processes were considered as the main mechanism con-

forming cultural history.43 If inheritance in its broader sense (that is, growth

proportional to the group size) is indeed the dominant form of transmis-

sion of cultural traits, then models similar to Simon’s offer a promising way

of explaining the statistical abundance and evolution of a large number of

cultural features.
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