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Abstract – The evolutionary dynamics of molecular populations are strongly dependent on the
structure of genotype spaces. The map between genotype and phenotype determines how easily
genotype spaces can be navigated and the accessibility of evolutionary innovations. In particular,
the size of neutral networks corresponding to specific phenotypes and its statistical counterpart,
the distribution of phenotype abundance, have been studied through multiple computationally
tractable genotype-phenotype maps. In this work, we test a theory that predicts the abundance
of a phenotype and the corresponding asymptotic distribution (given the compositional variability
of its genotypes) through the exact enumeration of several GP maps. Our theory predicts with
high accuracy phenotype abundance, and our results show that, in navigable genotype spaces
—characterised by the presence of large neutral networks— phenotype abundance converges to a
log-normal distribution.

focus  article Copyright c© EPLA, 2018

Introduction. – How the genetic information maps
into functional phenotypes (the so-called genotype-to-
phenotype, or GP, map) critically conditions the dynamics
of evolution [1,2]. Genotypes encode the information to
generate phenotypes and in the process of replication un-
dergo all sorts of mutations. The second basic mechanism
of evolution, selection, acts upon phenotypes. Standard
approaches to evolutionary dynamics have traditionally
overlooked the fact that genotype and phenotype are con-
nected through very complex mechanisms, and that the
latter may have strong effects on the dynamics.

Genotype spaces can be depicted as networks, with
nodes representing genotypes and links joining pairs of
genotypes mutually accessible through a mutation. Phe-
notypes are then subsets of nodes in this network, and the
GP map describes their distribution in genotype space. As

(a)Contribution to the Focus Issue Evolutionary Modeling and Ex-

perimental Evolution edited by José Cuesta, Joachim Krug and
Susanna Manrubia.

selection acts on phenotypes, evolution within a connected
component of a phenotype is neutral (or nearly so). For
this reason, they are referred to in the literature as neutral
networks (NNs) [3,4]. A characteristic feature of all known
GP maps is the strongly heterogeneous distribution of the
abundance (number of nodes) of their NNs [5,6]. A few
NNs are huge, typically percolating the whole genotype
space, whereas most of them are small. This has evolu-
tionary implications. First of all, the existence of huge
NNs endows populations with a high genomic variability
without bearing any selective cost. Secondly, most phe-
notypes are not accessible for entropic reasons [7–9]. Be-
sides, large NNs are so interwoven that virtually any pair
of them are connected to each other, thus facilitating the
search for phenotypes [10,11]. Under this paradigm, evo-
lution is both robust and innovative.

Given the complexity of GP maps, we need to un-
cover and characterise as many general features as pos-
sible. One of them is the abundance distribution of NNs.

28001-p1
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Fig. 1: (Colour online) Schematic representation of the different GP maps exhaustively studied in this work. (a) In RNA,
sequences are folded to minimum free energy secondary structures that define the phenotype; (b) in the compact version of the
HP model, hydrophobic (H, white circles) and polar (P, red circles) residues adopt the minimum compact energy configuration;
(c) in non-compact HP, sequences are assigned to self-avoiding walks of minimum energy; (d) toyLIFE is a multilevel GP map
with HP-like sequences that code for compact HP interacting proteins. Phenotype definitions can be found in the Supplementary
Material Supplementarymaterial.pdf (SM).

The first studies of this distribution often relied on ran-
dom samplings of the genotype space and considered rel-
atively short RNA molecules [12,13]. These are chains of
a two- to four-letter alphabet (A, U, C, G or a subset
of those), whose phenotype is identified as a minimum-
free-energy folding (secondary structure) [14]. Results
pointed to a fat-tailed, decaying distribution [13,15–18]
—although whether exponential, power law, or otherwise
is far from clear. Later studies of longer molecules (up to
126 letters long) show bell-shaped abundance distributions
instead [8].

The first theoretical model addressing this question
considered a set of binary sequences with a specific GP
mapping rule [19]: the abundance distribution was an
unequivocal power law. Later, it was pointed out that
two different kinds of distributions —power law and log-
normal— are possible [20]. The argument relies on the
existence of sites showing low and high compositional
variability within a phenotype. Power laws are ex-
pected when these positions occupy fixed sites, whereas
log-normals arise if their location is not fixed, so that
counting the number of arrangements of them in the
sequence yields a combinatorial factor. In the case of
RNA sequences, low/high variability sites are associated
to paired/unpaired nucleotides in the folded structure.
A combinatorial calculation of the distribution of paired
and unpaired sites can be carried out exactly (see [21]
and references therein) and shown to be normal. As the
number of low variability sites can be related to the loga-
rithm of the phenotype abundance, the resulting distribu-
tion turns out to be log-normal. As a matter of fact, since
not only paired sites, but any other structural feature of
the folded chain can be shown to have a normal distribu-
tion, the argument can be extended even if site variability
is affected by other structural elements. The log-normal
prediction is thus expected to be quite robust.

Versatility of a site. – An alternative way to look
at the problem of estimating phenotype abundance was
suggested in the discussion of [20]. If, for a given pheno-
type, a variable vi could measure the average number of
different letters of the alphabet that show up at site i of
its sequences, then the abundance could be estimated as

Sest = v1v2 · · · vL (1)

if the genotype is a chain of length L. This definition is
easy to understand if sites are either completely neutral
(any mutation maintains the phenotype, vi = k, the size of
the alphabet) or fully constrained (any mutation changes
phenotype, vi = 1). In a more general case, vi would take
intermediate values.

Given that phenotypes differ in the distributions of
their structural motifs, and that the variability of a site
is strongly correlated to the motif it sits in, variables vi

can be regarded as phenotype-dependent random variables
that take values from a certain distribution. Thus, by the
central limit theorem lnS will be a phenotype-dependent,
normally distributed random variable.

Here is a way to estimate one such variable vi (hence-
forth referred to as versatility) for an alphabet of k letters.
We choose a phenotype and count in how many of its geno-
types letter α shows up at site i. Let mα,i be that number.
Then we define the versatility at site i through

vi =
1

Mi

k
∑

α=1

mα,i, Mi ≡ max{m1,i, . . . , mk,i}. (2)

The rationale behind this definition relies on assuming
that the relative frequencies of each letter of the alphabet
at each position i are proportional to the fraction of the
space of genotypes associated to the phenotype. It implic-
itly assumes that the most frequent letter at each position
is always characteristic of the phenotype, while other let-
ters, appearing less frequently, may yield sequences cor-
responding to different phenotypes. For example, if G
appears mG,i times and C appears mG,i/2 times, other
letters being absent, the versatility of that site would be
vi = 3/2, meaning that a half of the mutations from G
to C at that site change phenotype. When only one let-
ter appears, vi = 1, while vi = k if all letters are equally
likely, recovering the limits of simple models [19,20].

Testing the definition of versatility. – In order to
show that the versatility introduced in eq. (2) is a mean-
ingful concept, we have tested it for different GP maps
(sketched in fig. 1) regarding how well it predicts the abun-
dance of a specific phenotype component and its relation-
ship with the distribution of phenotype abundances.

First, we have folded all RNA sequences of length
L = 16, using the Vienna package [22], and classified them

28001-p2
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Fig. 2: (Colour online) Log-log-log histograms of the estimated
abundance (Sest calculated as in (1)), vs. actual abundance (S)
of the connected components of different GP maps: (a) four-
letter RNA of length L = 16, (b) two-letter GC-RNA of length
L = 30, (c) compact HP model 5 × 6 with U(HH) = −1, and
(d) toyLIFE for two genes.

according to their secondary structures. For such a small
length, phenotypes are normally fragmented into several
connected, neutral components (NCs) of comparable size,
but exhaustively folding longer sequences quickly becomes
computationally unfeasible. Since NCs behave, to all pur-
poses, as independent NNs, we treat them as independent
phenotypes, regardless of whether or not they fold into the
same secondary structure. Then, we count how many se-
quences each NC contains (its abundance, S) and calculate
its site versatilities vi according to the definition (2). The
product of them all yields the estimated abundance (1).
Figure 2(a) shows a histogram comparing actual and esti-
mated abundances for all the NCs, showing a remarkable
agreement. The distinction between NCs and phenotypes
becomes less relevant as the length of genotypes grows, as
discussed later (see also SM).

A variant of this model is made of RNA sequences con-
taining only two complementary bases, for example G and
C (GC-RNA). A two-letter alphabet allows us to study se-
quences almost twice as long with a similar computational
effort [10]. We have repeated the previous analysis for GC-
RNA sequences of length L = 30, and plotted the result
in fig. 2(b). Fragmentation is more frequent in this model,
and NCs are generally smaller. This is why their number
is so high and why they are so dispersed in fig. 2(b). Also,
the largest NCs are three orders of magnitude smaller than
those of four-letter RNA sequences. For this model, the
versatility of paired sites is strictly 1 because any muta-
tion in such a pair will break the link. Unpaired sites do
not have much more freedom either, because a mutation
can often create a new link and change the folding. In
spite of these constraints, fig. 2(b) shows a clear correla-
tion between S and Sest, with the overwhelming majority
of NCs near the diagonal.

The third GP map that we have analysed is the HP
model for lattice proteins [23], where a protein is repre-
sented by a self-avoiding chain of hydrophobic (H) or polar
(P) beads on a lattice. The energy of a given configuration
is calculated from a contact potential,

E =
∑

i<j

U(σi, σj)Cij , (3)

where σi ∈ {H, P}, Cij = 1 when i and j are neighbours
on the lattice (with |i − j| �= 1) and Cij = 0 otherwise,
and U(σi, σj) specifies the interaction strength. Several
different specific realisations of the model can be found
in the literature (see below). For two-dimensional square
lattices, compact and non-compact versions of the model
have been studied. In compact HP, sequences of length
L = l1 × l2 are forced to fold into rectangular structures,
while non-compact HP considers all self-avoiding walks
in the lattice. In fig. 2(c) we show the case example of
compact HP 5×6 with a single nonzero energy parameter,
U(H, H) = −1 where the phenotype is defined as the non-
degenerated, minimum energy conformation (see SM).

Finally, we have also analysed toyLIFE, a multilevel
model of a simplified cellular biology [24,25] in which
binary sequences are first mapped to HP-like proteins
that interact between themselves, with the genome, and
with metabolites. The phenotype is defined by the set of
metabolites that a given sequence is able to catabolise.
Consequently, toyLIFE has a lower genotype level, which
translates into proteins (second level), whose interactions
add a third, regulatory level. This regulation is altered
by the presence of metabolites, which can be catabolised
as a result, giving rise to the phenotypic expression at
this highest level. Even though the connection between
genotype sites and structural elements in this model is far
from clear, versatilities can be computed nonetheless. The
estimations of phenotype abundances arising from their
values, for the case of two genes (length L = 40), are
compared with actual abundances in fig. 2(d). We can
observe a slight but systematic underestimation of abun-
dances. In spite of that, the correlation between S and Sest

is strong, and the cloud of points runs parallel to the diag-
onal. The slight underestimation of versatility, however,
does not affect the argument leading to the log-normal
abundance distribution —only the mean and the variance
will be affected.

The prediction of phenotype abundance has been a mat-
ter of study, among others due to its relevance for protein
designability [26], for molecular robustness and evolvabil-
ity [27], or in the neutralist-selectionist controversy [8].
Attempts at estimating phenotype abundance have been
made using compositional entropy [23,26]. However, the
comparison with the predictions obtained through site ver-
satility reveals that versatility has a superior performance
(see SM and fig. S1).

Distribution of abundance of RNA NCs. – Fig-
ure 3(a) shows the distribution p(ln S) of the abundance
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Fig. 3: (Colour online) Log-abundance distributions p(lnS) for
the NCs of (a) four-letter RNA sequences of length L = 16 and
(b) GC-RNA sequences of length L = 30. Dots are the actual
values; lines are Gaussian fits to the data.

of RNA sequences of length L = 16 in NCs, along with a
least-squares fit of the function exp[a(ln S)2 + b lnS + c],
the expected asymptotic distribution according to eq. (1).
The length of the sequences is too short to exhibit a per-
fect Gaussian shape yet: the curve is truncated on the
left-hand side and there are deviations for small and large
NCs abundances.

Though the abundance distribution of NCs for GC-RNA
sequences is a decreasing function with a fat tail (fig. 3(b)),
the right tail of a log-normal provides a good fit that cap-
tures the slight concavity of the curve. Regardless of the
alphabet size, the log-normal distribution is theoretically
supported by eq. (1).

The theory developed up to now strictly applies to
NCs of phenotypes. However, it was originally inspired by
studies reporting a log-normal distribution of phenotype
abundances [8]. Also, data corresponding to GC-RNA
phenotypes compatible with a power-law distribution [16]
can be fit at least equally well by a truncated log-normal
such as that in fig. 3(b). In the next section we will in-
troduce an effective model that will provide some insights
into the specific shapes of these distributions and clarify
how the theory asymptotically applies to phenotypes.

Effective two-versatility model for RNA. –

Consider long RNA sequences —irrespective of their
composition— folded into secondary structures. It has
been shown that paired and unpaired sites admit on aver-
age a different amount of mutations in a given NC, that
is, they differ in neutrality. Asymptotically, the over-
all neutrality of a phenotype can be well described by
two values, each corresponding to one of the structural

elements [28,29]. In this vein, we consider now a simplified
model with two versatility values: one for paired (vp) and
one for unpaired (vu) sites (with 1 ≤ vp < vu ≤ k for an al-
phabet of k letters). As neutrality, site versatility depends
in principle on many factors other than whether the corre-
sponding base forms a bond. Nevertheless, we do observe
that, on average, versatilities associated to paired sites
are significantly smaller than those associated to unpaired
ones. Interestingly, previous works have identified a clear
correlation between RNA secondary structure elements
(stems and loops) and nucleotide composition [30,31], giv-
ing indirect support to our approximation.

The two-versatility model was introduced [20] to argue
for a log-normal distribution of the abundance of RNA
sequences in NNs. More precisely, the number of RNA
secondary structures with a given number ℓ of paired sites
can be shown to be (in the limit L → ∞) proportional to
a Gaussian function of ℓ with mean μL−μ0 and standard
deviation σL1/2 −σ0L

−1/2+O(L−3/2) (μ = 0.28647, μ0 =
1.36502, σ = 0.25510, σ0 = 0.00713). In virtue of (1) and
the fact that, within the two-versatility model, S = vℓ

pv
L−ℓ
u

—hence ℓ ∝ log S— this immediately leads to a log-normal
distribution of S with mean and standard deviation

μL = L(ln vu − μ) + μ0 + O
(

L−1
)

, (4)

σL = 2 ln(vu/vp)
(

σL1/2 − σ0L
−1/2

)

+ O
(

L−3/2
)

. (5)

In order to test this two-versatility model we will use the
data of ref. [8] —a collection of estimates of the abun-
dance distribution of RNA secondary structures obtained
by sampling random sequences of lengths in the range
L = 20–126. The resulting distributions are proportional
to Sp(lnS) but, if p(lnS) is a normal distribution with
mean μL and standard deviation σL, then so is Sp(lnS),
with the same standard deviation but a shifted mean
μL + σ2

L. Fitting Gaussian functions to these data yields
μL and σL. Then, through eqs. (4), (5) we can infer the
corresponding versatilities vp, vu —which appear in fig. 4.
This plot suggests that these versatilities have well defined
asymptotic values for L → ∞, namely vp = 1.17 ± 0.08,
vu = 2.79 ± 0.08. For comparison, the average versatil-
ities obtained from our data for L = 16 are vav

p = 1.11,
vav

u = 2.37.
A caveat is in order here. The results of [8] corre-

spond to the abundance of phenotypes, no matter how
many NCs they have, whereas, strictly speaking, the two-
versatility model can only be applied to the latter. The
surprising agreement of the extrapolated versatilities with
those directly obtained from the data for L = 16 sug-
gests that for L large, either phenotypes are broken into
few NCs, or one of these components is much larger than
the others and dominates the abundance of the pheno-
type. The existence of genetic correlations in NCs seems
to cause both effects [6]. Even for short RNA and HP
sequences, the largest connected component of a pheno-
type grows linearly with the abundance of the pheno-
type, while the number of components either diminishes
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Fig. 4: (Colour online) Average versatilities of unpaired (vu)
and paired (vp) sites obtained by fitting a two-versatilities
model to the sampled abundance distributions of ref. [8] for
RNA sequences of different lengths. Lines are fits to data of
the form vi = v∞

i − bie
−ciL, from which the asymptotic values

of the two versatilities v∞
i are extrapolated.

with phenotype abundance [10] or remains mostly inde-
pendent [32]. Therefore, the largest NC becomes more
dominant the larger the phenotype, so that the latter is
well approximated by a single component. In consequence,
the distribution of phenotype abundances is asymptoti-
cally equivalent to the distribution of NCs abundances.

The improvement of the fit upon increasing length can
be indirectly inferred from the data of ref. [8]. The fits of
Gaussian functions to these data are more accurate than
the one of fig. 3(a) (see SM and fig. S2), and show that the
log-normal behaviour of p(S) is what should be expected
for long sequences.

We can apply the two-versatility model to our results
with GC-RNA. The effective versatilities are vp = 0.75
and vu = 1.32 (from the data we obtain the exact value
vp = 1 and the average vav

u = 1.43). As in the case of
four-letter RNA (c.f. fig. 4), the values of vp for short
lengths are unphysical (vp < 1). This notwithstanding,
effective versatilities are not too far from the average ones,
providing an indirect support to the fact that the log-
normal distribution for this model has a mean close to 1
—explaining why only the right branch is observed.

Phenotype definition, alphabet size, and navi-

gability of genotype spaces. – Figure 2 suggests that
the goodness of the phenotype abundance estimation (1)
might depend on the specific GP map. While it works
amazingly well for four letter RNA, it is not that good
for compact HP or toyLIFE, which have similarly large
NCs. Indeed, high accuracy in that prediction implicitly
relies i) on the existence of a clear-cut quantitative rela-
tionship between sequence sites and structural elements
—which is mediated by a consistent definition of pheno-
type, and ii) on the presence of a giant NC in pheno-
types. The latter seems essential for the abundance of
phenotypes to follow a bona fide log-normal distribution.
Though the relationship between sequence and structure
is unequivocal for RNA, it depends on the definition of
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Fig. 5: (Colour online) (a), (c), (e) Log-log-log histograms of
the estimated abundance Sest vs. actual abundance S of the
NCs of different HP versions. (b), (d), (f) NCs abundance
distributions. (a), (b) Compact HP 5×6 with U(H,H) = −2.3
and U(H,P ) = U(P, H) = −1; (c), (d) non-compact HP30
with U(H, H) = −1, and (e), (f) non-compact HP20 S (based
on minimal contact maps) with U(H,H) = −1.

phenotype in various versions of the HP model (see SM),
becomes unavoidably cryptic for toyLIFE, and might be
hard to define in GP maps lacking an easy representa-
tion of genotypes as sequences [33]. On the other hand, a
comparison of the distribution of abundances in two- and
four-letter RNA indicates that the larger the alphabet the
larger the components of phenotypes and the better de-
fined the log-normal distributions. These observations are
in full agreement with results for the HP model, as shown
in the following.

Figure 5 illustrates the performance of versatility and
abundance distributions for three additional definitions of
phenotype in HP models: compact HP30 with two param-
eters for energy (fig. 5(a) and (b)), non-compact HP30
((c) and (d)) and non-compact HP20 with phenotypes de-
fined through minimal contact maps ((e) and (f)) that is,
the set Sij formed by those pairs with a nonzero contribu-
tion to the folding energy, Sij = {i, j | U(σi, σj)Cij < 0}.

Initially, the HP model was implemented in its com-
pact version for computational tractability: notice that
the number of different two-dimensional conformations in
compact HP30 is 108-fold smaller than in non-compact
HP30 (table 1). Compact HP versions actually impose
unrealistic spatial constraints: two residues i and j can
be forced to be in contact without having an associated
interaction energy, that is Cij = 1, but U(σi, σj) = 0.
Spatial restrictions may therefore assign to a unique phe-
notype (or NC thereof) sequences whose affiliation easily
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Table 1: Data corresponding to the exhaustive enumeration of phenotypes in multiple GP maps. The first column lists the
maps studied and some of its quantitative properties: total number of phenotypes, number of non-empty (NE) phenotypes (this
quantity resulting from folds with non-negative energy and the large number of degenerated genotypes that are discarded, see
SM), number of sequences assigned to a unique phenotype (UaS), average abundance of phenotypes Sav, total number of neutral
components (NCs), and fraction of non-functional sequences (f∅). Non-compact HP20 (n-c HP20) is included to compare with
n-c HP20 with minimal contact maps (n-c HP20 S) as phenotypes (a distribution of phenotype abundances for n-c HP20 can
be found in [34]).

Model Phenotypes NE phenotypes UaS Sav NCs f∅

RNA30 GC 240944076 432221 1073725603 2484.2 68389814 0.0000151
RNA16 ACGU 5223 648 1712323320 2642474 23092 0.601
compact HP30 13498 13498 187212435 13869.6 362221 0.826

compact HP30(a) 13498 13498 258434457 19146.1 1986907 0.759
n-c HP30(b) 784924528667 2333498 22466621 9.63 3732449 0.979
n-c HP20 41889578 5310 24900 4.69 6586 0.976
n-c HP20 S 910971 54818 292732 5.34 62379 0.721
toyLIFE 2214 ≃ 2.63 × 1064 775 134400450 173419.9 1523544 0.9999

(a)Data obtained with two energy parameters, U(H, H) = −2.3 and U(H, P ) = U(P, H) = −1.
(b)Data from [35].

changes under more natural phenotype definitions [36].
This has an immediate effect on abundance distributions,
as fig. 5(b) shows: besides a decrease at small NC sizes,
the distribution develops a bump at high abundances. The
non-compact versions of HP are difficult to explore exhaus-
tively due to the astronomically large number of possible
phenotypes [35]. Still, phenotypes are free from spatial
constraints and, as a result, abundance distributions can
be fit with a log-normal function (fig. 5(d), (f)). These
distributions are qualitatively similar to that obtained for
GC-RNA, though NCs are significantly larger in the lat-
ter. Smaller NCs could be expected if, instead of the Vi-
enna Package to fold RNA sequences, a model with few
energy parameters (such as, e.g., Nussinov algorithm for
loop matching [37]) is used.

In either compact or non-compact realisations, folding
is calculated by using one [35] or two [23] nonzero en-
ergy parameters, examples being U(H, H) = −1, as in
fig. 2(c)) or U(H, H) = −2.3, and U(H, P ) = −1, e.g.,
as in fig. 5(a)). Genotypes in these HP models can typi-
cally be mapped to more than one phenotype. Tradition-
ally, these degenerated genotypes are discarded, since they
have been interpreted as the analogues of intrinsically dis-
ordered proteins, and therefore devoid of function. This
convention results in one of the most concerning features
of classical HP models [38], where an astonishingly large
fraction of sequences are systematically not assigned to
phenotypes, yielding empty phenotypes and many small
and highly fragmented ones (see table 1 for representa-
tive examples). It is important to remark that a high
fraction of non-functional sequences does not necessarily
imply that phenotypes are small and isolated, since other
models —where the small fraction of functional sequences
is not due to degeneration— do have large and easily nav-
igable phenotypes [24,39,40].

Adding more energy parameters serves to disambiguate
the assignation of genotypes to phenotypes, though the

increase in the fraction of sequences assigned to pheno-
types is however minor (compare the two compact HP30
versions in table 1). Phenotypes defined through contact
maps are closer analogues of RNA secondary structure (as
in our example with non-compact HP20): contact maps
appear as a more natural definition of phenotype that fur-
thermore reduces about 40-fold the number of different
phenotypes and notably decreases sequence degeneration
(table 1). Also, degeneration diminishes significantly when
the size of the alphabet grows. In a systematic study with
sequences of length L = 25, degeneration is halved when
going from two- to four-letter alphabets, and it reaches a
few percent for 20-letter representations [41]. Concomi-
tantly, phenotypes become larger and more connected.

The fact that most phenotypes are small, weakly con-
nected and even difficult to navigate in classical HP mod-
els [35] raises doubts on their relevance for evolutionary
dynamics, speaking in favour of more complex but also
more realistic scenarios [38], and certainly supporting non-
compact versions of lattice protein models [36]. In agree-
ment with the above, the definition of phenotype criti-
cally affects the distribution of abundances, which changes
from decreasing functions for two-letter alphabets (as in
fig. 5) to functions with a maximum and a fat tail for 20-
letter, compact versions [38,42]. Independent studies sug-
gest that minimal alphabets are not optimal in an evolu-
tionary sense [43], further supporting the limited applica-
bility of two-letter models, especially to draw conclusions
on evolutionary dynamics. Unfortunately, an exhaustive
study of non-compact lattice protein models with more
than two letters is, as of today, computationally unfeasible.

Conclusions. – The vastness of genotype spaces pre-
vents a complete characterisation based on computational
approaches. A look at table 1 suffices to illustrate the as-
tronomically large numbers involved in calculations with
sequences of length well below that typically found in
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biochemical processes. The data generated to analyse the
different models in this contribution reaches 0.5 TB and,
as their diversity shows, would be of limited use in the
absence of an accompanying theory. Therefore, an under-
standing of the structure of realistic GP maps demands
further theoretical developments that can be extrapolated
to arbitrarily long sequences. We have shown that the
definition of useful quantities such as versatility allows
for reliable estimations of the abundance of phenotypes
and for the derivation of the expected distribution. The
knowledge of the asymptotic values vp and vu yields that
distribution in RNA of any length, as well as an estima-
tion of the number of genotypes folding into an arbitrary
(typical) structure. Similar derivations should be possible
for other GP maps endowed with consistent definitions of
the phenotype.
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